https://www.selleckchem.com/products/tp-0903.html For over 15-years, proponents of the One Health approach have worked to consistently interweave components that should never have been separated and now more than ever need to be re-connected the health of humans, non-human animals, and ecosystems. We have failed to heed the warning signs. A One Health approach is paramount in directing our future health in this acutely and irrevocably changed world. COVID-19 has shown us the exorbitant cost of inaction. The time to act is now.This work successfully fabricated a novel magnetic adsorbent, i.e., phosphate modified magnetite@ferrihydrite (Mag@Fh-P), and explored its potential application for Cd(II) removal from water, soil, and sediment. To synthesize the adsorbent, ferrihydrite-coated magnetite (Mag@Fh) was firstly developed with partially acid-dissolved natural magnetite particles, followed by in-situ synthesis of ferrihydrite on magnetite surface via alkali addition. Selection of natural magnetite as iron source for ferrihydrite synthesis and as magnetic core is believed to save the cost of adsorbent. Then, phosphate was loaded on Mag@Fh by impregnation-heating treatment to produce Mag@Fh-P. Batch adsorption experiments revealed that the Cd(II) adsorption on Mag@Fh-P could reach equilibrium within 60 min, and the calculated adsorption capacity using Langmuir model was 64.1 mg/g, which was significantly higher than that on magnetite (0.44 mg/g) and Mag@Fh (23.9 mg/g). The results from X-ray photoelectron spectroscopy analysis and batch adsorption experiments confirmed that both ligand exchange and electrostatic attraction contributed to Cd(II) adsorption. Besides, Mag@Fh-P can also be an efficient amendment for soil and sediment remediation. The spent Mag@Fh-P could be easily recovered via magnetic separation, accompanied by the significant decrease in total Cd(II) concentration in soil/sediment. At an adsorbent dosage of 2 wt%, 0.82 and 0.74 mg/kg of total Cd(II) in