https://www.selleckchem.com/MEK.html However, there was no significant effect of habitat structure and its interaction with forest type on species richness and activity density of spiders. Species composition of non-native and native plantation forests differed significantly. Furthermore, we identified six characteristic spider species of non-native plantations with preference for relatively moist habitat conditions. The single characteristic species, (Agroeca cuprea Menge, 1873) for the native plantations preferred dry and partly shaded habitats. We conclude that the effect of microclimatic differences and prey availability presumably overrides the effect of habitat structure on winter-active spiders. © The Author(s) 2020. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.Evolve and re-sequencing (E&R) studies investigate the genomic responses of adaptation during experimental evolution. Because replicate populations evolve in the same controlled environment, consistent responses to selection across replicates are frequently used to identify reliable candidate regions that underlie adaptation to a new environment. However, recent work demonstrated that selection signatures can be restricted to one or a few replicate(s) only. These selection signatures frequently have weak statistical support, and given the difficulties of functional validation, additional evidence is needed before considering them as candidates for functional analysis. Here, we introduce an experimental procedure to validate candidate loci with weak or replicate-specific selection signature(s). Crossing an evolved population from a primary E&R experiment to the ancestral founder population reduces the frequency of candidate alleles that have reached a high frequency. We hypothesize that genuine selection targets will experience a repeatable frequency increase after the mixing with the