https://www.selleckchem.com/products/AZD6244.html The aim of this study was to formulate experimental dental adhesives with wollastonite and evaluate the physical, chemical, and bioactivity properties of the resins. Wollastonite was characterized by Fourier transform infrared spectroscopy, X-ray and laser diffraction analyses, and scanning electronic microscopy. An experimental adhesive resin was formulated, and wollastonite was used as filler at 0 (control group), 0.5, 1, or 2 wt.%. Radiopacity, degree of conversion (DC%), microhardness, softening in solvent, ultimate tensile strength (UTS), 24 h- and 1 year- microtensile bond strength (μTBS), mineral deposition, and color of the adhesives were evaluated. Wollastonite particles showed a needle-like shape, a mean diameter of 70 (± 30) μm, characteristic chemical peaks, and pure crystalline β-CaSiO phase. There were no significant differences (p > 0.05) for radiopacity, softening in solvent, and color change. The group with 2 wt.% of wollastonite showed higher microhardness and UTS in comparison toilicate-based material, provided bioactivity for the adhesives, which assists in producing therapeutic tooth-restoration interfaces. Moreover, the incorporation of this mineral improOfiller to improve the biological properties of adhesives and assist in dentin-restoration stability.The TP53 gene is arguably the most important tumor suppressor gene known, contributing multifaceted roles to the process of tumor development. Its protein product p53, is a crucial sequence-specific transcription factor which regulates the expression of a large network of protein-coding genes, as well as thousands of noncoding RNAs (ncRNAs), notably microRNAs and long ncRNAs (lncRNAs). Through a variety of direct and indirect mechanisms, ncRNAs in turn modulate p53 levels and activity. Here the numbers of studies are steadily building which link the contributions of dysregulated ncRNAs to tumorigenesis via their participation throughout the p53 r