https://www.selleckchem.com/products/sop1812.html The vertebrate heart is regulated by excitatory adrenergic and inhibitory cholinergic innervations, as well as non-adrenergic non-cholinergic (NANC) factors that may be circulating in the blood or released from the autonomic nerves. As an example of NANC signaling, an increased histaminergic tone, acting through stimulation of H2 receptors, contributes markedly to the rise in heart rate during digestion in pythons. In addition to the direct effects of histamine, it is also known that histamine can reinforce the cholinergic and adrenergic signaling. Thus, to further our understanding of the histaminergic regulation of the cardiovascular response in pythons, we designed a series of in vivo experiments complemented by in vitro experiments on sinoatrial and vascular ring preparations. We demonstrate the tachycardic mechanism of histamine works partly through a direct binding of cardiac H2 receptors and in part through a myocardial histamine-induced catecholamine release, which strengthens the sympathetic adrenergic signaling pathway. Endothelial cell (EC) dysfunction underlies the pathology of multiple disease conditions including cardiovascular and pulmonary diseases. Dysfunctional ECs have a distinctive gene expression profile compared to healthy ECs. RNAi therapy is a powerful therapeutic approach that can be used to silence multiple genes of interests simultaneously. However, the delivery of RNAi to ECs in vivo continues to be a major challenge. Here, we optimized a polymer formulation based on poly(β-amino ester)s (pBAEs) to deliver siRNA to vascular ECs. We developed a library of bioinspired oligopeptide-modified pBAE nanoparticles (NPs) with different physicochemical proprieties and screened them for cellular uptake and efficacy of RNAi delivery in vitro using ECs, vascular smooth muscle cells, and THP-1 monocytes. From the screening, the lysine-/histidine-oligopeptide modified pBAE (C6-KH) NP was selected and fur