https://www.selleckchem.com/products/MDV3100.html Quantifying how the heart rate of ectothermic organisms responds to environmental conditions (e.g. water temperature) is important information to quantify their sensitivity to environmental change. Heart rate studies have typically been conducted in lab environments where fish are confined. However, commercially available implantable heart rate biologgers provide the opportunity to study free-swimming fish. Our study aimed to determine the applicability of an implantable device, typically used on fusiform-shaped fish (e.g. salmonids), for a perciform fish where morphology and anatomy prevent ventral incisions normally used on fusiform-shaped fish. We found that ventrolateral incisions allowed placement near the heart, but efficacy of the loggers was sensitive to their orientation and the positioning of the electrodes. Electrocardiogram detection, signal strength and subsequent heart rate readings were strongly influenced by logger orientation with a significant effect on the quality and quantity of heart rate recordings. We provide details on the surgical procedures and orientation to guide future heart rate biologger studies on perciform-shaped fish. © The Author(s) 2020. Published by Oxford University Press and the Society for Experimental Biology.Objectives Zika virus (ZIKV) is a mosquito-borne flavivirus that re-emerged in 2015. The association between ZIKV and neurological complications initiated the development of relevant animal models to understand the mechanisms underlying ZIKV-induced pathologies. Transient inhibition of the type I interferon (IFN) pathway through the use of an IFNAR1-blocking antibody, MAR1-5A3, could efficiently permit active virus replication in immunocompetent animals. Type I IFN signalling is involved in the regulation of humoral responses, and thus, it is crucial to investigate the potential effects of type I IFN blockade towards B-cell responses. Methods In this study, comparative an