These experimental results suggest that nucleation does not involve segregation and that crystal growth induces segregation. The discovery of the non-segregated crystalline state has an implication in not only the understanding of crystallization of glassy ice in meteorology and planetary physics but also the application to cell thawing techniques in cryobiology and food engineering.Both the translational diffusion coefficient D and the electrophoretic mobility μ of a short rod-like molecule (such as dsDNA) that is being pulled toward a nanopore by an electric field should depend on its orientation. Since a charged rod-like molecule tends to orient in the presence of an inhomogeneous electric field, D and μ will change as the molecule approaches the nanopore, and this will impact the capture process. We present a simplified study of this problem using theoretical arguments and Langevin dynamics simulations. In particular, we introduce a new orientational capture radius, which we compare to the capture radius for the equivalent point-like particle, and we discuss the different physical regimes of orientation during capture and the impact of initial orientations on the capture time.Functional soft materials, comprising colloidal and molecular building blocks that self-organize into complex structures as a result of their tunable interactions, enable a wide array of technological applications. Inverse methods provide a systematic means for navigating their inherently high-dimensional design spaces to create materials with targeted properties. While multiple physically motivated inverse strategies have been successfully implemented in silico, their translation to guiding experimental materials discovery has thus far been limited to a handful of proof-of-concept studies. In this perspective, we discuss recent advances in inverse methods for design of soft materials that address two challenges (1) methodological limitations that prevent such approaches from satisfying design constraints and (2) computational challenges that limit the size and complexity of systems that can be addressed. Strategies that leverage machine learning have proven particularly effective, including methods to discover order parameters that characterize complex structural motifs and schemes to efficiently compute macroscopic properties from the underlying structure. We also highlight promising opportunities to improve the experimental realizability of materials designed computationally, including discovery of materials with functionality at multiple thermodynamic states, design of externally directed assembly protocols that are simple to implement in experiments, and strategies to improve the accuracy and computational efficiency of experimentally relevant models.We present an extension of the multiparticle collision dynamics method for flows with complex interfaces, including supramolecular near-contact interactions mimicking the effect of surfactants. The new method is demonstrated for the case of (i) short range repulsion of droplets in close contact, (ii) arrested phase separation, and (iii) different pattern formation during spinodal decomposition of binary mixtures.Interfacial behaviors and properties play critical roles in determining key practical parameters of electrochemical energy storage systems, such as lithium-ion and sodium-ion batteries. Soft x-ray spectroscopy features shallow penetration depth and demonstrates inherent surface sensitivity to characterize the interfacial behavior with elemental and chemical sensitivities. In this review, we present a brief survey of modern synchrotron-based soft x-ray spectroscopy of the interface in electrochemical energy storage systems. The technical focus includes core-level spectroscopy of conventional x-ray absorption spectroscopy and resonant inelastic x-ray scattering (RIXS). We show that while conventional techniques remain powerful for probing the chemical species on the surface, today's material research studies have triggered much more demanding chemical sensitivity that could only be offered by advanced techniques such as RIXS. Another direction in the field is the rapid development of various in situ/operando characterizations of complex electrochemical systems. Notably, the solid-state battery systems provide unique advantages for future studies of both the surface/interface and the bulk properties under operando conditions. We conclude with perspectives on the bright future of studying electrochemical systems through these advanced soft x-ray spectroscopic techniques.Molpro is a general purpose quantum chemistry software package with a long development history. It was originally focused on accurate wavefunction calculations for small molecules but now has many additional distinctive capabilities that include, inter alia, local correlation approximations combined with explicit correlation, highly efficient implementations of single-reference correlation methods, robust and efficient multireference methods for large molecules, projection embedding, and anharmonic vibrational spectra. In addition to conventional input-file specification of calculations, Molpro calculations can now be specified and analyzed via a new graphical user interface and through a Python framework.The strong inter-relationship between cyclohepta-1,3,5-triene (CHT) and norcaradiene (NCD) systems observed in some reactions has been extended to include the energy surfaces for some low-lying ionic states. https://www.selleckchem.com/products/terephthalic-acid.html Equilibrium structures for ionic states of CHT with 2A' symmetry were routinely found; the structures emerging with 2A'' symmetry were NCD ionic states. A detailed analysis of these surfaces as a function of the C1 to C6 distance showed that while minima occurred for both state symmetries, curve crossing occurs in CS symmetry, which is avoided by distortion to C1 symmetry. The CHT → NCD structural change is attributed to initial conrotatory closure of the singly occupied molecular orbital. A new synchrotron-based photoelectron spectrum (PES) for CHT up to 25 eV shows little vibrational structure. We have assigned the PES up to 17 eV using a variety of theoretical methods. The calculated lowest ionic state, X2A', is predicted to have a very low vibrational frequency of 87 cm-1, leading to a high density of vibrational states.