https://www.selleckchem.com/products/n-nitroso-n-methylurea.html It is generally well accepted that eukaryotes evolved from the symbiosis of an archaeal host cell and an alphaproteobacterium, a union that ultimately gave rise to the complex, eukaryotic cells we see today. However, the catalyst of this merger, the exact nature of the cellular biology of either partner, or how this event spawned the vast majority of complex life on Earth remains enigmatic. In recent years, the discovery of the Asgard archaea, the closest known prokaryotic relatives of eukaryotes, has been monumental for addressing these unanswered questions. These prokaryotes seem to encode an unprecedented number of genes related to features typically descriptive of eukaryotes, including intracellular trafficking, vesicular transport and a dynamic actin-based cytoskeleton. Collectively, these features imply that the Asgard archaea have the potential for cellular complexity previously thought to be unique to eukaryotes. Here, we review the most recent advances in our understanding of the archaeal cytoskeleton and its implications for determining the origin of eukaryotic cellular complexity.Quantification of intratumoural heterogeneity is essential for designing effective therapeutic strategies in the age of personalized medicine. In this study, we used a piezoelectric inkjet printer to enable analysis of intratumoral heterogeneity in a bladder cancer for the first time. Patient derived tumor organoids were dissociated into single cell suspension and used as a bioink. The individual cells were precisely allocated into a microwell plate by drop-on-demand inkjet-printing without any additive or treatment, followed by culturing into organoids for further analysis. The sizes and morphologies of the organoids were observed, so as the expression of proliferation and apoptotic markers. The tumor organoids also showed heterogeneous responses against chemotherapeutic agent. Further, we quantified mRNA expressio