5 to 5.8 log CFU/ml total Paenibacillus and 0.3 to 4.6 log CFU/ml P. macerans in the samples. The assay could be useful in commercial settings, allowing a sensitive detection of P. macerans.Biotransformation of natural products to the natural flavoring, gamma-decalactone (GDL), has attracted considerable attention. However, improving its yield is challenging due to its high feedback inhibition of yeast cells, which lowers the productivity of the biotransformation process. In this study, we compared two in situ separation processes established by adding either resin (HZ-816) or cyclopentasiloxane (DC345) to a biotransformation medium and investigated their efficiency and effect on yeast metabolism. Compared with a control, yields from the medium with HZ-816 and DC345 increased by 140% and 175%, respectively. However, after 84 h of biotransformation, the protein leakage in the medium with HZ-816 and DC345 was respectively 2.04 times and 1.43 times that of the control. Meanwhile, the mortality of yeast cells was 32.8% and 24.0% in the medium with HZ-816 and DC345, respectively, whereas that in the control was 20.1%. Our findings indicate that a cyclase is involved in the final step of the biotransformation. The activity of the yeast cyclase in the DC345 system was 3.33 times greater than that in the HZ-816 system. The DC345 system was superior to the HZ-816 resin system in this separation process because its yield was 30.8% greater and it had less cellular damage. Thus, we showed that the DC345 system has potential as a new separation system for the production of GDL by biotransformation.The accurate identification of lactobacilli is essential for the effective management of industrial practices associated with lactobacilli strains, such as the production of fermented foods or probiotic supplements. For this reason, in this study, we proposed the Multi Fragment Melting Analysis System (MFMAS)-lactobacilli based on high resolution melting (HRM) analysis of multiple DNA regions that have high interspecies heterogeneity for fast and reliable identification and characterization of lactobacilli. The MFMAS-lactobacilli is a new and customized version of the MFMAS, which was developed by our research group. MFMAS-lactobacilli is a combined system that consists of i) a ready-to-use plate, which is designed for multiple HRM analysis, and ii) a data analysis software, which is used to characterize lactobacilli species via incorporating machine learning techniques. Simultaneous HRM analysis of multiple DNA fragments yields a fingerprint for each tested strain and the identification is performed by compapecies. Hence, our proposed system could be a potential alternative to overcome the inconsistencies and difficulties of the current methods.Annealing behavior of amylose and amylopectin was unclear. In this work, high purity amylose and amylopectin were extracted from rice starch, and structural properties of the retrograded rice starch, amylose, and amylopectin before and after annealing treatment were explored. It was found that the purity of the amylose and amylopectin was 95.64% ± 2.69% and 94.98% ± 0.97%, respectively. Their molecular weight was (2.93 ± 0.21) × 106 Da and (5.90 ± 0.13) × 107 Da, respectively. Besides, the relative crystallinities and ratios of 1047 cm-1/1022 cm-1 of the retrograded rice starch and amylose were significantly increased by annealing treatment, while that of retrograded amylopectin did not change. These results clarified that amylose was more sensitive to annealing treatment than amylopectin, and amylose was more responsible for annealing of starch than amylopectin. The findings contributed to a better understanding of the annealing behavior of starch.The aim of this work consists in the use of cashew gum (Anacardium occidentale), a naturally occurring tropical specie from the Brazilian northeastern coast, for the synthesis of CoFe2O4 (CF) and NiFe2O4 (NF) nanoparticles. The structural, morphological and vibrational properties of nanoparticles were characterized by analytical and spectroscopic techniques such as X-ray diffraction (XRD), FTIR, Raman spectroscopy, TEM, SAED and TG. Magnetic properties were investigated through Mössbauer spectroscopy and DC magnetometry. The XRD results showed single phase nanoparticles with space group Fd-3m and crystallite size of 7.4 and 6.0 for CF and NF, respectively. TEM images showed agglomerated particles with mode sizes of 5.0 and 6.5 nm for CF and NF. SAED confirmed the crystalline spinel structure. The TGA and FTIR showed the presence of a carbonaceous material in the samples. FTIR and Raman spectroscopy demonstrated vibrational modes characteristic of metal‑oxygen bonds in the tetrahedral and octahedral sites. Magnetization measurements showed that both samples are superparamagnetic at 300 K. The Mössbauer spectra at 90 K showed the presence of single-phase CF and NF.The binding between the enzyme lactate dehydrogenase (LDH) and ferrihydrite nanoparticles (Fh-NPs) was investigated by means of small-angle neutron scattering (SANS), Fourier-transform infrared (FTIR) spectroscopy, fluorescence and Förster resonance energy transfer (FRET) and molecular docking. https://www.selleckchem.com/products/CP-690550.html Fh-NPs - LDH compounds of dimensions under 100 nm are formed. The conformational changes and the mechanism of interaction between LDH and Fh-NPs simple and doped with Cu and Co, and the effect of these NPs on the thermal denaturation of LDH were monitored. The quenching mechanism is static, the binding occurring with moderate affinity, being mainly driven by hydrogen bonding and van der Waals forces. FRET occurs at a minimal distance of 2.55 nm. Thermal denaturation of LDH in the presence of simple and doped Fh-NPs shows that the thermodynamic parameters of protein unfolding are significantly changed with temperature. The denaturation temperature of LDH shifts to higher values in the presence of all Fh-NPs, than in the case of simple LDH. The docking approach estimates the energy corresponding to the best fit of the ferrihydrite in the LDH binding site near Trp. These results have direct implications on the uses of the complex of LDH with Fh-NPs in various biochemical, biological, or clinical applications.