We estimated allelic frequencies of 23,412 SNPs in 156 landraces representing American and European maize diversity. Modified Roger's genetic Distance between 156 landraces estimated from 23,412 SNPs and 17 simple sequence repeats using the same DNA bulks were highly correlated, suggesting that the ascertainment bias is low. Our approach is affordable, easy to implement and does not require specific bioinformatics support and laboratory equipment, and therefore should be highly relevant for large-scale characterization of genebanks for a wide range of species.In plants, there is a complex and multilevel network of the antioxidative system (AOS) operating to counteract harmful reactive species (RS), the foremost important of which are reactive oxygen species (ROS), and maintain homeostasis within the cell. Specific AOSs for plant cells are, first and foremost, enzymes of the glutathione-ascorbate cycle (Asc-GSH), followed by phenolic compounds and lipophilic antioxidants like carotenoids and tocopherols. Evidence that plant cells have excellent antioxidative defense systems is their ability to survive at H2O2 concentrations incompatible with animal cell life. For the survival of stressed plants, it is of particular importance that AOS cooperate and participate in redox reactions, therefore, providing better protection and regeneration of the active reduced forms. Considering that plants abound in antioxidant compounds, and humans are not predisposed to synthesize the majority of them, new fields of research have emerged. Antioxidant potential of plant compounds has been exploited for anti-aging formulations preparation, food fortification and preservation but also in designing new therapies for diseases with oxidative stress implicated in etiology.Improving growth and productivity of plants that are vulnerable to environmental stresses, such as heavy metals, is of significant importance for meeting global food and energy demands. Because heavy metal toxicity not only causes impaired plant growth, it has also posed many concerns related to human well-being, so mitigation of heavy metal pollution is a necessary priority for a cleaner environment and healthier world. https://www.selleckchem.com/ Hydrogen sulfide (H2S), a gaseous signaling molecule, is involved in metal-related oxidative stress mitigation and increased stress tolerance in plants. It performs multifunctional roles in plant growth regulation while reducing the adverse effects of abiotic stress. Most effective function of H2S in plants is to eliminate metal-related oxidative toxicity by regulating several key physiobiochemical processes. Soil pollution by heavy metals presents significant environmental challenge due to the absence of vegetation cover and the resulting depletion of key soil functions. However, the use of stress alleviators, such as H2S, along with suitable crop plants, has considerable potential for an effective management of these contaminated soils. Overall, the present review examines the imperative role of exogenous application of different H2S donors in reducing HMs toxicity, by promoting plant growth, stabilizing their physiobiochemical processes, and upregulating antioxidative metabolic activities. In addition, crosstalk of different growth regulators with endogenous H2S and their contribution to the mitigation of metal phytotoxicity have also been explored.Narcissus flowers are used as cut flowers and to obtain high quality essential oils for the perfume industry. As a winter crop in the Mediterranean area, it flowers at temperatures ranging between 10 and 15°C during the day and 3-10°C during the night. Here we tested the impact of different light and temperature conditions on scent quality during post-harvest. These two types of thermoperiod and photoperiod. We also used constant darkness and constant temperatures. We found that under conditions of 1212 Light Dark and 15-5°C, Narcissus emitted monoterpenes and phenylpropanoids. Increasing the temperature to 20°-10°C in a 1212 LD cycle caused the loss of cinnamyl acetate and emission of indole. Under constant dark, there was a loss of scent complexity. Constant temperatures of 20°C caused a decrease of scent complexity that was more dramatic at 5°C, when the total number of compounds emitted decreased from thirteen to six. Distance analysis confirmed that 20°C constant temperature causes the most divergent scent profile. We found a set of four volatiles, benzyl acetate, eucalyptol, linalool, and ocimene that display a robust production under differing environmental conditions, while others were consistently dependent on light or thermoperiod. Scent emission changed significantly during the day and between different light and temperature treatments. Under a lightdark cycle and 15-5°C the maximum was detected during the light phase but this peak shifted toward night under 20-10°C. Moreover, under constant darkness the peak occurred at midnight and under constant temperature, at the end of night. Using Machine Learning we found that indole was the volatile with a highest ranking of discrimination followed by D-limonene. Our results indicate that light and temperature regimes play a critical role in scent quality. The richest scent profile is obtained by keeping flowers at 15°-5°C thermoperiod and a 1212 Light Dark photoperiod.[This corrects the article .].Metabolically healthy obesity (MHO) accounts for roughly 35% of all obese patients. There is no clear consensus that has been reached on whether MHO is a stable condition or merely a transitory period between metabolically healthy lean and metabolically unhealthy obesity (MUO). Additionally, the mechanisms underlying MHO and any transition to MUO are not clear. Macrophages are the most common immune cells in adipose tissues and have a significant presence in atherosclerosis. Fas (or CD95), which is highly expressed on macrophages, is classically recognized as a pro-apoptotic cell surface receptor. However, Fas also plays a significant role as a pro-inflammatory molecule. Previously, we established a mouse model (ApoE-/-/miR155-/-; DKO mouse) of MHO, based on the criteria of not having metabolic syndrome (MetS) and insulin resistance (IR). In our current study, we hypothesized that MHO is a transition phase toward MUO, and that inflammation driven by our newly classified CD95+CD86- macrophages is a novel mechanism for this transition.