https://www.selleckchem.com/products/cid44216842.html 29; 95% CI 1.59-3.30; p less then 0.001), and living in homes with ≤3 rooms (OR=1.79; 95% CI 1.21-2.63; p=0.003). CONCLUSIONS Thai student's exposure to SHS at home is high, especially when household members smoke and they live in a home without a smoke-free rule. Our findings highlight the need for policies and interventions to establish smoke-free homes. © 2020 Phetphum C. and Noosorn N.Aromatic and heterocyclic functionality are ubiquitous in pharmaceuticals. Herein, we disclose a new Mn(PDP)catalyst system using chloroacetic acid additive capable of chemoselectively oxidizing remote tertiary C(sp 3)-H bonds in the presence of a broad range of aromatic and heterocyclic moieties. Although catalyst loadings can be lowered to 0.1 mol% under a Mn(PDP)/acetic acid system for aromatic and non-basic nitrogen heterocycle substrates, the Mn(PDP)/chloroacetic acid system generally affords 10-15% higher isolated yields on these substrates and is uniquely effective for remote C(sp 3)-H hydroxylations in substrates housing basic nitrogen heterocycles. The demonstrated ability to perform Mn(PDP)/chloroacetic acid C(sp 3)-H oxidations in pharmaceutically relevant complex molecules on multi-gram scales will facilitate drug discovery processes via late-stage functionalization.Background Allergic rhinitis (AR) is an immunoglobulin E (IgE)-mediated immune-inflammatory response mainly affecting nasal mucosa. Apigenin, a flavonoid, has been documented to possess promising anti-allergic potential. Aim To determine the potential mechanism of action of apigenin against ovalbumin (OVA)-induced AR by assessing various behavioral, biochemical, molecular, and ultrastructural modifications. Materials and Methods Allergic rhinitis was induced in BALB/c mice (18-22 grams) by sensitizing it with OVA (5%, 500 μL, intraperitoneal [IP] on each consecutive day, for 13 days) followed by intranasal challenge with OVA (5%, 5 μL per nostril on day 2