https://www.selleckchem.com/products/alw-ii-41-27.html The detection of product defects is essential in quality control in manufacturing. This study surveys stateoftheart deep-learning methods in defect detection. First, we classify the defects of products, such as electronic components, pipes, welded parts, and textile materials, into categories. Second, recent mainstream techniques and deep-learning methods for defects are reviewed with their characteristics, strengths, and shortcomings described. Third, we summarize and analyze the application of ultrasonic testing, filtering, deep learning, machine vision, and other technologies used for defect detection, by focusing on three aspects, namely method and experimental results. To further understand the difficulties in the field of defect detection, we investigate the functions and characteristics of existing equipment used for defect detection. The core ideas and codes of studies related to high precision, high positioning, rapid detection, small object, complex background, occluded object detection and object association, are summarized. Lastly, we outline the current achievements and limitations of the existing methods, along with the current research challenges, to assist the research community on defect detection in setting a further agenda for future studies.We employ the recently introduced generalized microcanonical inflection point method for the statistical analysis of phase transitions in flexible and semiflexible polymers and study the impact of the bending stiffness upon the character and order of transitions between random-coil, globules, and pseudocrystalline conformations. The high-accuracy estimates of the microcanonical entropy and its derivatives required for this study were obtained by extensive replica-exchange Monte Carlo simulations. We observe that the transition behavior into the compact phases changes qualitatively with increasing bending stiffness. Whereas the Θ collapse transition is less