https://www.selleckchem.com/ Many intricate pathways contribute to the timely control of gene expression during development. Polycomb repressive complexes (PRC1 and PRC2) and long non-coding RNAs (lncRNAs) are players associated with gene repression in various developmental processes such as X chromosome inactivation (XCI) and genomic imprinting. Historically, lncRNAs were proposed to directly recruit PRC2. However, recent evidence suggests that promiscuous interactions between PRC2 and RNA fine-tune the function of the complex through a multiplicity of mechanisms. A PRC2-recruitment model was definitively overturned in the paradigm of XCI by Xist RNA, being replaced by a novel mechanism which puts PRC1 in the spotlight. This review focuses on these recent advances in understanding the interplay between RNA and Polycomb complexes for gene expression control.Background During the past two decades, three novel coronaviruses (CoVs) have emerged to cause international human epidemics with severe morbidity. CoVs have also emerged to cause severe epidemics in animals. A better understanding of the natural hosts and genetic diversity of CoVs are needed to help mitigate these threats. Objective To design and evaluate a molecular diagnostic tool for detection and identification of all currently recognized and potentially future emergent CoVs from the Orthocoronavirinae subfamily. Study design and results We designed a semi-nested, reverse transcription RT-PCR assay based upon 38 published genome sequences of human and animal CoVs. We evaluated this assay with 14 human and animal CoVs and 11 other non-CoV respiratory viruses. Through sequencing the assay's target amplicon, the assay correctly identified each of the CoVs; no cross-reactivity with 11 common respiratory viruses was observed. The limits of detection ranged from 4 to 4 × 102 copies/reaction, depending on the CoV species tested. To assess the assay's clinical performance, we tested a large panel of previously studi