https://www.selleckchem.com/products/dinaciclib-sch727965.html In contrast, periphyton abundances in autumn and winter were not influenced by nutrient and temperature, but they were notably higher on plants with a more complex morphological structure than simple ones. The genus composition of periphyton was significantly affected by nutrient-temperature interactions in all seasons and by plant type in winter. Moreover, periphyton functional composition exhibited noticeable seasonal change and responded strongly to nutrient enrichment and temperature rise in spring, summer, and autumn. Our results suggest that the effect of warming on periphyton abundance and composition in the different seasons varied with nutrient state and host plant type in these mesocosms, and similar results may likely be found under field conditions. Copyright © 2020 Hao, Wu, Zhen, Jo, Cai, Jeppesen and Li.The diverse fruit colors of peppers (Capsicum spp.) are due to variations in carotenoid composition and content. Mature fruit color in peppers is regulated by three independent loci, C1, C2, and Y. C2 and Y encode phytoene synthase (PSY1) and capsanthin-capsorubin synthase (CCS), respectively; however, the identity of the C1 gene has been unknown. With the aim of identifying C1, we analyzed two pepper accessions with different fruit colors Capsicum frutescens AC08-045 and AC08-201, whose fruits are light yellow and white, respectively. Ultra-performance liquid chromatography showed that the total carotenoid content was six times higher in AC08-045 than in AC08-201 fruits, with similar composition of main carotenoids and slight difference in minor components. These results suggest that a genetic factor in AC08-201 may down-regulate overall carotenoid biosynthesis. Analyses of candidate genes related to carotenoid biosynthesis and plastid abundance revealed that both accessions carry non-functional alleles of Cr data demonstrate that the fruit color locus C1 in Capsicum spp. corresponds to the