https://www.selleckchem.com/products/yk-4-279.html N-hydroxyphthalimide (NHPI) is an efficient organic catalyst and an important chemical raw material which can be used as an intermediate in organic synthesis of drugs and pesticides. In this study, NHPI has been used as a coreactant of lucigenin chemiluminescence (CL) for the first time. The CL of the developed system is significantly enhanced in the presence of Co2+. Therefore, we developed a novel lucigenin-NHPI CL method coupled with flow injection analysis for the sensitive, precise, and selective determination of Co2+. The linear range of this method is 1-1000 nM, and the detection limit is 67 pM (S/N = 3). In addition, this method has a good selectivity for Co2+. It has been applied to the detection of Co2+ in lake water, and the standard recovery rate is 95.9-103.2%, indicating that the method is feasible.In this work, a core-satellite optoplasmonic particle containing a silica microsphere covered with gold nanoparticles (AuNPs) was developed through wet chemistry synthesis in aqueous phase. The electroless deposition and galvanic replacement were employed to anchor AuNPs onto silica sphere surface. The escalated as well as expanded electric field enhancement within the dielectric-metallic interface was analyzed through finite difference time domain (FDTD) simulation. The numerical models and the surface-enhancement Raman spectroscopy (SERS) measurements over blood serum both support that the equatorial plane is the preferred collecting plane for improved signal intensity and stability. The nanocomposite emerged lower relative standard deviation (RSD) in repetitive measurement compared to AuNPs. In practice, this hybrid structure was applied for lung cancer diagnosis based on serum SERS spectra analysis of the patients diagnosed with nodules. The prediction with the aid of principal component analysis (PCA) and support-vector machine (SVM) was attempted for the classification of healthy, benign and relatively