https://www.selleckchem.com/products/d609.html The replacement of traditional CdS with zinc magnesium oxide (ZMO) has been demonstrated as being helpful to boost power conversion efficiency of cadmium telluride (CdTe) solar cells to over 18%, due to the reduced interface recombination and parasitic light absorption by the buffer layer. However, due to the atmosphere sensitivity of ZMO film, the post treatments of ZMO/CdTe stacks, including CdCl2 treatment, back contact deposition, etc., which are critical for high-performance CdTe solar cells became crucial challenges. To realize the full potential of the ZMO buffer layer, plenty of investigations need to be accomplished. Here, copper thiocyanate (CuSCN) is demonstrated to be a suitable back-contact material with multi-advantages for ZMO/CdTe solar cells. Particularly, ammonium hydroxide as the solvent for CuSCN deposition shows no detrimental impact on the ZMO layer during the post heat treatment. The post annealing temperature as well as the thickness of CuSCN films are investigated. Finally, a champion power conversion efficiency of 16.7% is achieved with an open-circuit voltage of 0.857 V, a short-circuit current density of 26.2 mA/cm2, and a fill factor of 74.0%.This letter proposes a radar interferometric survey system for the ground surface of helicopter landing sites. This system generates high-quality three-dimensional terrain surface topography data and estimates the slope of the site with the required accuracy. This study presents the processing algorithms of the radar system for safe helicopter landing using an interferometric method and also demonstrates the efficiency of the proposed approach based on computer simulation results. The results of the calculated potential accuracy characteristics of such a system are presented, as well as one of the variants of the algorithmic implementation of a simulation computer model implemented on MATLAB. Visual results of modeling using an example of a helicopter l