In addition, like other avian species, chickens do not synthesize adequately glycine or proline (the most abundant AAs in the body but present in plant-source feedstuffs at low content) relative to their nutritional and physiological needs. Therefore, these two AAs must be sufficient in poultry diets. Animal proteins (including ruminant meat & bone meal and hydrolyzed feather meal) are abundant sources of both glycine and proline in chicken nutrition. Clearly, chickens (including broilers and laying hens) have dietary requirements for all proteinogenic AAs to achieve their maximum productivity and maintain optimum health particularly under adverse conditions such as heat stress and disease. This is a paradigm shift in poultry nutrition from the 70-year-old "ideal protein" concept that concerned only about EAAs to the focus of functional AAs that include both EAAs and NEAAs.Amino acids are the building blocks of proteins in animals, including swine. With the development of new analytical methods and biochemical research, there is a growing interest in fundamental and applied studies to reexamine the roles and usage of amino acids (AAs) in swine production. In animal nutrition, AAs have been traditionally classified as nutritionally essential (EAAs) or nutritionally nonessential (NEAAs). AAs that are not synthesized de novo must be provided in diets. However, NEAAs synthesized by cells of animals are more abundant than EAAs in the body, but are not synthesized de novo in sufficient amounts for the maximal productivity or optimal health (including resistance to infectious diseases) of swine. This underscores the conceptual limitations of NEAAs in swine protein nutrition. Notably, the National Research Council (NRC 2012) has recognized both arginine and glutamine as conditionally essential AAs for pigs to improve their growth, development, reproduction, and lactation. Results of recent work have also provided compelling evidence for the nutritional essentiality of glutamate, glycine, and proline for young pigs. The inclusion of so-called NEAAs in diets can help balance AAs in diets, reduce the dietary levels of EAAs, and protect the small intestine from oxidative stress, while enhancing the growth performance, feed efficiency, and health of pigs. https://www.selleckchem.com/products/d-4476.html Thus, both EAAs and NEAAs are needed in diets to meet the requirements of pigs. This notion represents a new paradigm shift in our understanding of swine protein nutrition and is transforming pork production worldwide.In sheep and goats, amino acid nutrition is essential for the maintenance of health and productivity. In this review, we analysed literature, mostly from the past two decades, focusing on assessment of amino acid requirements, especially on the balance of amino acid profiles between ruminal microbial protein and animal production protein (foetal growth, body weight gain, milk and wool). Our aim was to identify amino acids that might limit genetic potential for production. We propose that much attention should be paid to amino acid nutrition of individuals with greater abilities to produce meat, milk or wool, or to nourish large litters. Moreover, research is warranted to identify interactions among amino acids, particularly these amino acids that can send positive and negative signals at the same time.Amino acids (AAs) are essential for the survival, growth and development of ruminant conceptuses. Most of the dietary AAs (including L-arginine, L-lysine, L-methionine and L-glutamine) are extensively catabolized by the ruminal microbes of ruminants to synthesize AAs and microbial proteins (the major source of AAs utilized by cells in ruminant species) in the presence of sufficient carbohydrates (mainly cellulose and hemicellulose), nitrogen, and sulfur. Results of recent studies indicate that the ruminal microbes of adult steers and sheep do not degrade extracellular L-citrulline and have a limited ability to metabolize extracellular L-glutamate due to little or no uptake by the cells. Although traditional research in ruminant protein nutrition has focused on AAs (e.g., lysine and methionine for lactating cows) that are not synthesized by eukaryotic cells, there is growing interest in the nutritional and physiological roles of AAs (e.g., L-arginine, L-citrulline, L-glutamine and L-glutamate) in gestating ruminants (e.g., cattle, sheep and goats) and lactating dairy cows. Results of recent studies show that intravenous administration of L-arginine to underfed, overweight or prolific ewes enhances fetal growth, the development of brown fat in fetuses, and the survival of neonatal lambs. Likewise, dietary supplementation with either rumen-protected L-arginine or unprotected L-citrulline to gestating sheep or beef cattle improved embryonic survival. Because dietary L-citrulline and L-glutamate are not degraded by ruminal microbes, addition of these two amino acids may be a new useful, cost-effective method for improving the reproductive efficiency of ruminants.Proteins have been recognized for a long time as an important dietary nutritional component for all animals. Most amino acids were isolated and characterized in the late nineteenth and early twentieth century. Initially dietary proteins were ranked high to low quality by growth and N balance studies. By the 1950s interest had shifted to studying the roles of individual amino acids in amino acid requirements by feeding studies with non-ruminants as rodents, poultry and pigs. The direct protein feeding approaches followed by measurements of nutritional outcomes were not possible however in ruminants (cattle and sheep). The development of measuring free amino acids by ion exchange chromatography enabled plasma amino acid analysis. It was thought that plasma amino acid profiles were useful in nutritional studies on proteins and amino acids. With non-ruminants, nutritional interpretations of plasma amino acid studies were possible. Unfortunately with beef cattle, protein/amino acid nutritional adequacy or requirements could not be routinely determined with plasma amino acid studies. In dairy cows, however, much valuable understanding was gained from amino acid studies. Concurrently, others studied amino acid transport in ruminant small intestines, the role of peptides in ruminant N metabolism, amino acid catabolism (in the animal) with emphasis on branched-chain amino acid catabolism. In addition, workable methodologies for studying protein turnover in ruminants were developed. By the 1990s, nutritionists could still not determine amino acid requirements with empirical experimental studies in beef cattle. Instead, computer software (expert systems) based on the accumulated knowledge in animal and ruminal amino acids, energy metabolism and protein production were realized and revised frequently. With these tools, the amino acid requirements, daily energy needs, ruminal and total gastrointestinal tract digestion and performance of growing beef cattle could be predicted.