https://www.selleckchem.com/products/rg108.html Recently, the incidence of bile duct-related diseases continues to increase, and there is no effective drug treatment except liver transplantation. However, due to the limited liver source and expensive donations, clinical application is often limited. Although current studies have shown that ductular reaction cells (DRCs) reside in the vicinity of peribiliary glands can differentiate into cholangiocytes and would be an effective alternative to liver transplantation, the role and mechanism of DRCs in cholangiole physiology and bile duct injury remain unclear. A 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC)-enriched diet was used to stimulate DRCs proliferation. Our research suggests DRCs are a type of intermediate stem cells with proliferative potential that exist in the bile duct injury. Meanwhile, DRCs have bidirectional differentiation potential, which can differentiate into hepatocytes and cholangiocytes. Furthermore, we found DRCs highly express Lgr5, and Lgr5 is a molecular marker for neonatal DRCs (P less then .05). Finally, we confirmed Wnt/β-catenin signalling achieves bile duct regeneration by regulating the expression of Lgr5 genes in DRCs (P less then .05). We described the regenerative potential of DRCs and reveal opportunities and source for the treatment of cholestatic liver diseases.Porphyromonas gingivalis is a Gram-negative anaerobic pathogen found in subgingival plaque associated with progressive periodontitis. Proteins associated with the outer membrane (OM) of Gram-negative pathogens are particularly important for understanding virulence and for developing vaccines. The aim of this study was to establish a reliable list of outer membrane associated proteins (Omps) for this organism. Starting with a list of 99 experimentally determined Omps, several bioinformatics tools were used to predict a further 52 proteins, leading to a predicted OM proteome of 151 proteins. The tools used included databases