https://www.selleckchem.com/products/tepp-46.html The possibilities of optogenetic tools are nearly unlimited and enable the activation or silencing of whole neurons, or even the manipulation of a specific receptor type by light. The results of such behavioral experiments with integrated optogenetic stimulation directly visualizes changes in behavior caused by the manipulation. The behavior of the same animal without light stimulation as a baseline is a good control for induced changes. This allows a detailed overview of neuronal types or neurotransmitter systems involved in specific behaviors, such as anxiety. The plasticity of neuronal networks can also be investigated in great detail through long-term stimulation or behavioral observations after optical stimulation. Optogenetics will help to enlighten neuronal signaling in several kinds of neurological diseases.In recent years, non-thermal atmospheric pressure plasmas have been used extensively for surface treatments, in particular, due to their potential in biological applications. However, the scientific results often suffer from reproducibility problems due to unreliable plasma conditions as well as complex treatment procedures. To address this issue and provide a stable and reproducible plasma source, the COST-Jet reference source was developed. In this work, we propose a detailed protocol to perform reliable and reproducible surface treatments using the COST reference microplasma jet (COST-Jet). Common issues and pitfalls are discussed, as well as the peculiarities of the COST-Jet compared to other devices and its advantageous remote character. A detailed description of both solid and liquid surface treatment is provided. The described methods are versatile and can be adapted for other types of atmospheric pressure plasma devices.Published assays for mechanical nociception in Drosophila have led to variable assessments of behavior. Here, we fabricated, for use with Drosophila larvae, customized metal nickel-