https://www.selleckchem.com/products/ly333531.html This study aimed to assess earthworm's capability of reducing the bioavailability of cadmium (Cd) in soil and increasing soil fertility with the modification of seasonal variations of ambient temperatures on the efficacy of vermiremediation. Earthworms were exposed in soil fortified with 0, 5, 10, and 20 mg Cd kg-1, for 7, 14 and 21 days in winter and spring. The bioavailability of Cd in soil, which is represented in the form of diethylenetriaminepentaacetic acid-extractable fraction (DTPA-Cd), were significantly reduced, ranging from 7.9 to 18.3% in winter and 8.8 to 20.8% in spring. Meanwhile, we found earthworm activities could significantly improve the soil fertility as the results of increasing the availability of nitrogen, phosphorous, and potassium in soil, a prominent advantage of vermiremediation in heavy metal-contaminated soil. Although seasonality could increase Cd toxicity in earthworms, higher ambient temperature in spring season also promoted the reduction of Cd bioavailability and the increase of soil fertility, due to significant increase of microbial populations. In conclusion, we reported the dual beneficial effects of vermiremediation in reducing bioavailability of Cd in soil and simultaneously improving soil fertility in which both outcomes were modified by seasonality.Algae a promising energy reserve due to its adaptability, cheap source, sustainability and it's growth ability in wastewater with efficient sequestration of industrial carbon dioxide. This review summarizes the pathways available for biofuel production from carbon sequestered algae biomass. In this regard, this review focuses on microalgae and its cultivation in wastewater with CO2 sequestration. Conversion of carbon sequestered biomass into bio-fuels via thermo-chemical routes and its engine emission properties. Energy perspective of green gaseous biofuels in near future. This review revealed that algae was the pre-dominant CO2 s