https://www.selleckchem.com/GSK-3.html RESULTS The T 2 eff of macromolecules are reported, which range from 13 ms to 40 ms, whereas, for metabolites, they range from 40 ms to 110 ms. Both macromolecular and metabolite T2 relaxation times are observed to follow the decreasing trend, with increasing B0 . The linewidths of metabolite singlets can be fully attributed to T2 and B0 components. However, in addition to these components, macromolecule linewidths have contributions from J-coupling and overlapping resonances. CONCLUSION The T2 relaxation times of all macromolecular and metabolite peaks at 9.4 T in vivo are reported for the first time. Metabolite relaxation times were used to calculate the absolute metabolite concentrations. © 2020 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.Hepatocellular carcinoma (HCC) is a primary malignancy of the liver with a high worldwide prevalence and poor prognosis. Researches are urgently needed on its molecular pathogenesis and biological characteristics. Metabolic reprogramming for adaptation to the tumour microenvironment (TME) has been recognized as a hallmark of cancer. Dysregulation of lipid metabolism especially fatty acid (FA) metabolism, which involved in the alternations of the expression and activity of lipid-metabolizing enzymes, is a hotspot in recent study, and it may be involved in HCC development and progression. Meanwhile, immune cells are also known as key players in the HCC microenvironment and show complicated crosstalk with cancer cells. Emerging evidence has shown that the functions of immune cells in TME are closely related to abnormal lipid metabolism. In this review, we summarize the recent findings of lipid metabolic reprogramming in TME and relate these findings to HCC progression. Our understanding of dysregulated lipid metabolism and associated signalling pathways may suggest a novel strategy to tre