Genetic variation of the 16p11.2 deletion locus containing the KCTD13 gene and of CUL3 is linked with autism. https://www.selleckchem.com/products/brd-6929.html This genetic connection suggested that substrates of a CUL3-KCTD13 ubiquitin ligase may be involved in disease pathogenesis. Comparison of Kctd13 mutant (Kctd13 -/- ) and wild-type neuronal ubiquitylomes identified adenylosuccinate synthetase (ADSS), an enzyme that catalyzes the first step in adenosine monophosphate (AMP) synthesis, as a KCTD13 ligase substrate. In Kctd13 -/- neurons, there were increased levels of succinyl-adenosine (S-Ado), a metabolite downstream of ADSS. Notably, S-Ado levels are elevated in adenylosuccinate lyase deficiency, a metabolic disorder with autism and epilepsy phenotypes. The increased S-Ado levels in Kctd13 -/- neurons were decreased by treatment with an ADSS inhibitor. Lastly, functional analysis of human KCTD13 variants suggests that KCTD13 variation may alter ubiquitination of ADSS. These data suggest that succinyl-AMP metabolites accumulate in Kctd13 -/- neurons, and this observation may have implications for our understanding of 16p11.2 deletion syndrome.Sexual selection can favor production of exaggerated features, but the high cost of such features in terms of energy consumption and enemy avoidance makes them go to extinction under the influence of natural selection. However, fossils preserved with specialized features are very rare. Here, we report a new nymph from Burmese amber, Magnusantena wuae Du & Chen gen. et sp. nov., which has exaggerated leaf-like expanded antennae. Such bizarre antennae indicate that sensitive and delicate sensory system and magnificent appearance in Hemiptera have been already established in mid-Cretaceous. Our findings may provide evidence for Darwin's view that sensory organs play an important role in sexual selection. This nymph with the leaf-like antennae may also represents a new camouflage pattern. However, the oversized antennae are costly to develop and maintain, increasing the risks from predators. Such unparalleled expanded antennae might be the key factor for the evolutionary fate of the coreid.Nonalcoholic fatty liver disease (NAFLD) is currently the most prevalent form of liver disease worldwide. This term encompasses a spectrum of pathologies, from benign hepatic steatosis to non-alcoholic steatohepatitis, which have, to date, been challenging to model in the laboratory setting. Here, we present a human pluripotent stem cell (hPSC)-derived model of hepatic steatosis, which overcomes inherent challenges of current models and provides insights into the metabolic rewiring associated with steatosis. Following induction of macrovesicular steatosis in hepatocyte-like cells using lactate, pyruvate, and octanoate (LPO), respirometry and transcriptomic analyses revealed compromised electron transport chain activity. 13C isotopic tracing studies revealed enhanced TCA cycle anaplerosis, with concomitant development of a compensatory purine nucleotide cycle shunt leading to excess generation of fumarate. This model of hepatic steatosis is reproducible, scalable, and overcomes the challenges of studying mitochondrial metabolism in currently available models.Epidural electrical stimulation of the spinal cord is an emergent strategy for the neurological recovery of lower-extremity motor function. Motoneuron pools are thought to be recruited by stimulation of posterior roots. Here, we linked electromyographic data of epidurally evoked lower-extremity responses of 34 individuals with upper motoneuron disorders to a population model of the spinal cord constructed using anatomical parameters of thousands of individuals. We identified a relationship between segmental stimulation sites and activated spinal cord segments, which made spinal motor mapping from epidural space possible despite the complex anatomical interface imposed by the posterior roots. Our statistical approach provided evidence for low-threshold sites of posterior roots and effects of monopolar and bipolar stimulation previously predicted by computer modeling and allowed us to test the impact of different upper motoneuron disorders on the evoked responses. Finally, we revealed a statistical association between intraoperative and postoperative mapping of the spinal cord.Despite intuitive insights into differential proteolysis of amyloid precursor protein (APP), the stochasticity behind local product formation through amyloidogenic pathway at individual synapses remain unclear. Here, we show that the major components of amyloidogenic machinery namely, APP and secretases are discretely organized into nanodomains of high local concentration compared to their immediate environment in functional zones of the synapse. Additionally, with the aid of multiple models of Alzheimer's disease (AD), we confirm that this discrete nanoscale chemical map of amyloidogenic machinery is altered at excitatory synapses. Furthermore, we provide realistic models of amyloidogenic processing in unitary vesicles originating from the endocytic zone of excitatory synapses. Thus, we show how an alteration in the stochasticity of synaptic nanoscale organization contributes to the dynamic range of C-terminal fragments β (CTFβ) production, defining the heterogeneity of amyloidogenic processing at individual synapses, leading to long-term synaptic deficits as seen in AD.Functional dissociations in the brain observed during non-rapid eye movement (NREM) sleep have been associated with reduced information integration and impaired consciousness that accompany increasing sleep depth. Here, we explored the dynamical properties of large-scale functional brain networks derived from transient brain activity using functional magnetic resonance imaging. Spatial brain maps generally display significant modifications in terms of their tendency to occur across wakefulness and NREM sleep. Unexpectedly, almost all networks predominated in activity during NREM stage 2 before an abrupt loss of activity is observed in NREM stage 3. Yet, functional connectivity and mutual dependencies between these networks progressively broke down with increasing sleep depth. Thus, the efficiency of information transfer during NREM stage 2 is low despite the high attempt to communicate. Critically, our approach provides relevant data for evaluating functional brain network integrity and our findings robustly support a significant advance in our neural models of human sleep and consciousness.