https://www.selleckchem.com/products/gw806742x.html Salt-doped A/B/AB ternary polymer blends, wherein an AB copolymer acts as a surfactant to stabilize otherwise incompatible A and B homopolymers, display a wide range of nanostructured morphologies with significant tunability. Among these structures, a bicontinuous microemulsion (BμE) has been a notable target. Here, we report the surprising appearance of a robust C15 Laves phase, at compositions near where the BμE has recently been reported, in lithium bis(trifluoromethane) sulfonimide (LiTFSI)-doped low-molar-mass poly(ethylene oxide) (PEO)/polystyrene (PS)/symmetric PS-b-PEO block copolymer blends. The materials were analyzed by a combination of small-angle X-ray scattering (SAXS), 1H NMR spectroscopy, and impedance spectroscopy. The C15 phase emerges at a high total homopolymer volume fraction ϕH = 0.8 with a salt composition r = 0.06 (Li+/[EO]) and persists as a coexisting phase across a large area of the isothermal phase diagram with high PS homopolymer compositions. Notably, the structure exhibits a huge unit cell size, a = 121 nm, with an unusually high micelle core volume fraction (fcore = 0.41) and an unusually low fraction of amphiphile (20%). This unit cell dimension is at least 50% larger than any previously reported C15 phase in soft matter, despite the low molar masses used, unlocking the possibility of copolymer-based photonic crystals without compromising processability. The nanostructured phase evolution from lamellar to hexagonal to C15 along the EO60 isopleth (ϕPEO,homo-LiTFSI/ϕH = 0.6) is rationalized as a consequence of asymmetry in the homopolymer solubility limit for each block, which leads to exclusion of PS homopolymer from the PS-b-PEO brush prior to exclusion of the PEO homopolymer, driving increased interfacial curvature and favoring the emergence of the C15 Laves phase.The increasing use of nanoscale TiO2 particles (nTiO2) and their subsequent leakage into aquatic environments poses a t