Triphenyltin has been classified as an endocrine disruptor. However, whether triphenyltin interferes with the adrenal glands during puberty remains unknown. Here, we reported the effects of triphenyltin on the adrenal glands in rats. Male Sprague Dawley rats (age of 35 days) were orally administered with 0, 0.5, 1, or 2 mg/kg/day triphenyltin for 18 days. Triphenyltin significantly lowered corticosterone levels at 1 and 2 mg/kg and adrenocorticotropic hormone at 2 mg/kg. https://www.selleckchem.com/products/GW501516.html The RNA-Seq analysis detected multiple differentially expressed genes. Four down-regulated genes were transcription factor genes (Nr4a1, Nr4a2, Nr4a3, and Ppard), which might be associated with the suppression of the adrenal cortex function. RNA-seq and qPCR showed that triphenyltin dose-dependently down-regulated the expression of the genes for cholesterol transport and biosynthesis, including Scarb1, Ldlr, Hmgcs1, Hmgcr, and Hsd17b7. Further Western blotting revealed that it lowered NR4A1, PPRAD, LDLR, and HMGCS1 protein levels. We treated H295R adrenal cells with 1-100 nM triphenyltin for 72 h. Triphenyltin induced significant higher ROS production at 100 nM and did not induce apoptosis at 10 and 100 nM. In conclusion, triphenyltin inhibits production of corticosterone via blocking the expression of cholesterol uptake transporters and cholesterol biosynthesis.Bisphenol A (BPA) is an industrial chemical used in the production of various plastic materials. It is associated with reproductive, immunological and neurological disorders. Luteolin, a flavonoid found in fruits and vegetables, possesses anti-oxidative, anti-inflammatory and free radical scavenging properties. Here, we carried out studies to ascertain if Luteolin would ameliorate BPA-induced toxicity in Drosophila melanogaster. Firstly, flies were treated separately with Luteolin (0, 50, 100, 150 and 300 mg/kg diet) and BPA (0, 0.01, 0.05 and 0.1 mM) for 28 days survival assessments. Consequently, Luteolin (150 and 300 mg/kg diet) and/or BPA (0.05 mM) were exposed to D. melanogaster for 7 days for the evaluation of nitric oxide level, eclosion rate, viability assay, histology of fat body, antioxidant (Glutathione-S-transferase, catalase and total thiol), oxidative stress (hydrogen peroxide) and behavioural (negative geotaxis and acetylcholinesterase) markers. The results showed that BPA induced antioxidant-oxidative stress imbalance and behavioural deficit in flies. Luteolin increased survival rate and augmented antioxidant markers in flies. Importantly, Luteolin ameliorated BPA-induced degeneration in the fat body around the rostral, thorax and abdominal regions, oxidative stress, behavioural deficit, reduction in cell viability and eclosion rate of D. melanogaster (p less then 0.05). Overall, this study offered further insights on the antioxidative and chemopreventive properties of Luteolin against BPA-induced toxicity.The descending serotonergic pathway, from the brainstem to spinal cord, modulates various aspects of pain processing. The spinal 5-hydroxytryptamine (5-HT)1A and 5-HT2A receptors play pivotal roles in pain modulation. Perospirone is a novel atypical antipsychotic that serves as a 5-hydroxytryptamine (5-HT)1A receptor agonist, a 5-HT2A receptor antagonist, and a dopamine D2 receptor antagonist. Little is known about the effect of perospirone on pain transmission. Here, we explored whether perospirone attenuated neuropathic and inflammatory pain in the spinal cord. A chronic constriction injury to the sciatic nerve was induced in male Sprague-Dawley rats. We evaluated the effects of intrathecal administration of perospirone (10, 20, or 40 μg) on mechanical and cold hyperalgesia using the electronic von Frey and cold plate tests, respectively. Normal rats were assessed in terms of inflammatory nociception using the formalin test and for motor coordination employing the rotarod test. To define the mechanism underlying the action of perospirone, the effects of intrathecal pretreatment with the 5-HT1A receptor antagonist WAY-100635, the 5-HT2A/2C receptor agonist 1-(2,5-dimethoxy-4-iodophenyl)-aminopropane (DOI), and the dopamine D2 receptor agonist sumanirole on perospirone action were examined using the electronic von Frey test and cold plate test. Perospirone dose-dependently alleviated mechanical and cold hyperalgesia, but not inflammatory nociception in the spinal cord, and affected motor coordination. WAY-100635 reversed the antihyperalgesic action of perospirone significantly, but neither DOI nor sumanirole exhibited such an effect. We conclude that perospirone attenuates mechanical and cold hyperalgesia principally via 5-HT1A receptor activation in the spinal cord, and the agent is a promising novel candidate for neuropathic pain relief.The T-type calcium channel blocker, Z944, has been used as a pharmacological tool to assess T-type calcium channel function and examined for use as an anti-epileptic. As Z944 affects fear learning and memory in a rodent model of absence epilepsy, it is important to determine the effect of Z944 on learning and memory in a non-disease outbred rodent strain. This study examined the dose-dependent effects (5 mg/kg, 10 mg/kg, i.p.) of acute systemic treatment with Z944 on the learning and memory of fear conditioning and extinction in male Wistar rats. Z944 administered prior to the acquisition of fear conditioning significantly increased freezing prior to acquisition and extinction, during acquisition, and impaired recall of fear memory 24 h later. These findings suggest that T-type calcium channel activity may be required during associative learning for intact long-term memory. Enhanced fear behaviour observed prior to acquisition and extinction, and during acquisition could reflect an increase in anxiety, however, further testing is needed to determine the effect of Z944 on anxiety during fear conditioning and extinction. The use of Z944 for therapeutic purposes should consider the potential effects of Z944 on learning and memory in clinical populations.Animals use visual information to recognize the value of objects and respond with different behaviours, such as evasion or approach. While rodents show defensive behaviour toward an artificial looming stimulus that mimics an approaching avian predator, the visual feature that attracts them to targets with positive value, such as prey, remains unclear. Here, we reveal that rats show curiosity-related behaviours towards a virtual object on screen when it moves interactively with their movements, whereas they show less response to a static object, a regularly moving object, or interactive dislocation of the background. To mimic evading prey, we programmed the object to shrink when touched. Rats preferentially responded to interactive shrinking over interactive enlargement. These results suggest that rats exhibit a selective response to interactive objects. This would seem to be an efficient strategy for finding optimal prey using the evolutionarily conserved prey-predator relationship.