https://www.selleckchem.com/EGFR(HER).html Children are considered at higher risk for harmful noise effects due to their sensitive development phase. Here, we investigated the effects of nocturnal aircraft noise exposure on short-term annoyance assessed in the morning in 51 primary school children (8-10 years) living in the surrounding community of Cologne-Bonn Airport. Child-appropriate short-term annoyance assessments and associated non-acoustical variables were surveyed. Nocturnal aircraft noise exposure was recorded inside the children's bedrooms. Exposure-response models were calculated by using random effects logistic regression models. The present data were compared with those from a previous study near Cologne-Bonn Airport in adults using very similar methodology. Short-term annoyance reaction in children was not affected by the nocturnal aircraft noise exposure. Non-acoustical factors (e.g., the attitude that "aircraft are dangerous" or noise sensitivity), however, significantly impacted on children's short-term annoyance. In contrast to children, the probability of moderate to high annoyance in adults increased with the number of aircraft flyovers during the time in bed. It is concluded that short-term annoyance from nocturnal aircraft noise in children is mainly determined by non-acoustical factors. Unlike in adults, acoustical factors did not play a significant role.(Tl2O3)30-(Li2O)10-(B2O3)(60-y)-(Sm2O3)y glass system with various Sm2O3 additives (y = 0, 0.2, 0.4, 0.6) was studied in detail. The vibrational modes of the (Tl2O3)30-(Li2O)10-(B2O3)(60-y) network were active at three composition-related IR spectral peaks that differed from those mixed with Samarium (III) oxide at high wavenumber ranges. These glass samples show that their permeability increased with the Samarium (III) oxide content increase. Additionally, the electronic transition between localized states was observed in the samples. The MAC, HVL, and Zeff values for radiation shielding par