This potent inhibitor also stabilized NUDT15, enabling analysis by X-ray crystallography. We have determined high-resolution structures of the clinically relevant NUDT15 variants Arg139Cys, Arg139His, Val18Ile and V18_V19insGlyVal. These structures provide clear insights into the structural basis for the thiopurine intolerance phenotype observed in patients carrying these pharmacogenetic variants. These findings will aid in predicting the effects of new NUDT15 sequence variations yet to be discovered in the clinic.Non-melanoma skin cancers occur primarily in individuals over the age of 60 and are characterized by an abundance of ultraviolet (UV) signature mutations in keratinocyte DNA. https://www.selleckchem.com/products/uk5099.html Though geriatric skin removes UV photoproducts from DNA less efficiently than young adult skin, it is not known whether the utilization of other pro-survival but potentially mutagenic DNA damage tolerance systems such as translesion synthesis (TLS) is altered in older individuals. Using mono-ubiquitination of the replicative DNA polymerase clamp protein PCNA (proliferating cell nuclear antigen) as a biochemical marker of TLS pathway activation, we find that UVB exposure of skin from individuals over the age of 65 results in a higher level of PCNA mono-ubiquitination than in the skin of young adults. Furthermore, based on previous reports showing a role for deficient insulin-like growth factor-1 (IGF-1) signaling in altered UVB DNA damage responses in geriatric human skin, we find that both pharmacological inhibition of the IGF-1 receptor (IGF-1R) and deprivation of IGF-1 potentiates UVB-induced PCNA mono-ubiquitination in both human skin ex vivo and keratinocytes in vitro. Interestingly, though the TLS DNA polymerase Pol eta can accurately replicate the major photoproducts induced in DNA by UV radiation, we find that it fails to accumulate on chromatin in the absence of IGF-1R signaling and that this phenotype is correlated with increased mutagenesis in keratinocytes in vitro. Thus, altered IGF-1/IGF-1R signaling in geriatric skin may predispose epidermal keratinocytes to carry out a more mutagenic form of DNA synthesis following UVB exposure.The apurinic/apyrimidinic endodeoxyribonuclease 1 (APE1), the main AP-endonuclease of the DNA base excision repair pathway, is a key molecule of interest to researchers due to its unsuspected roles in different non-repair activities, such as i) adaptive cell response to genotoxic stress, ii) regulation of gene expression and iii) processing of microRNAs, which make it an excellent drug target for cancer treatment. We and others recently demonstrated that APE1 can be secreted in the extracellular environment, and that serum APE1 may represent a novel prognostic biomarker in hepatocellular and non-small cell lung cancers. However, the mechanism by which APE1 is released extracellularly was not described before. Here, using three different approaches for exosomes isolation commercial kit, nickel based isolation and ultracentrifugation methods and various mammalian cell lines, we elucidated the mechanisms responsible for APE1 secretion. We demonstrated that APE1 p37 and p33 forms are actively secreted through extracellular vesicles (EVs), including exosomes from different mammalian cell lines. We then observed that APE1 p33 form is generated by proteasomal-mediated degradation and is enzymatically active in EVs. Finally, we revealed that the p33 form of APE1 accumulates in EVs upon genotoxic treatment by cisplatin and doxorubicin, compounds commonly found in chemotherapy pharmacological treatments. Taken together, these findings provide for the first time evidence that a functional Base Excision Repair protein is delivered through exosomes in response to genotoxic stresses, shedding new light into the complex non canonical biological functions of APE1 and opening new intriguing perspectives on its role in cancer biology.Human D-3-phosphoglycerate dehydrogenase (PHGDH), a key enzyme in de novo serine biosynthesis, is amplified in various cancers and serves as a potential target for anti-cancer drug development. To facilitate this process, more information is needed on the basic biochemistry of this enzyme. For example, PHGDH was found to form tetramers in solution and the structure of its catalytic unit (sPHGDH) was solved as a dimer. However, how the oligomeric states affect PHGDH enzyme activity remains elusive. We studied the dependence of PHGDH enzymatic activity on its oligomeric states. We found that sPHGDH forms a mixture of monomers and dimers in solution with a dimer dissociation constant of ∼0.58 μM, with the enzyme activity depending on the dimer content. We computationally identified hotspot residues at the sPHGDH dimer interface. Single-point mutants at these sites disrupt dimer formation and abolish enzyme activity. Molecular dynamics simulations showed that dimer formation facilitates substrate binding and maintains the correct conformation required for enzyme catalysis. We further showed that the full-length PHGDH exists as a dynamic mixture of monomers, dimers and tetramers in solution with enzyme concentration dependent activity. Mutations that can completely disrupt the sPHGDH dimer show different abilities to interrupt the full-length PHGDH tetramer. Among them, E108A and I121A can also disrupt the oligomeric structures of the full-length PHGDH and abolish its enzyme activity. Our study indicates that disrupting the oligomeric structure of PHGDH serves as a novel strategy for PHGDH drug design and the hotspot residues identified can guide the design process.ACE inhibitors or angiotensin II receptor blockers (ACEi/ARBs) have been a cornerstone of the management in kidney disease, but their use is often limited by undesired systemic effects, such as symptomatic hypotension. To minimize the extra-renal effects of ACEi/ARBs, we formulated hydrophobically modified glycol chitosan (HGC) nanomicelles releasing olmesartan (HGC-Olm) that specifically accumulated in the kidney, and investigated whether kidney-specific delivery of olmesartan by HGC nanomicelles could ameliorate organ damage in Col4a3-/- mouse, a murine model of progressive chronic kidney disease mimicking human Alport syndrome. Ex vivo tracing demonstrated that intravenously injected HGC-Olm nanomicelles were specifically delivered to the kidney, with sustained release of olmesartan for more than 48 h. Contrary to the conventional delivery of olmesartan via oral route, injection of HGC-Olm nanomicelles did not alter blood pressure in Col4a3-/- mice. Immunohistochemistry revealed that HGC nanomicelles were diffusely distributed from the cortex and glomeruli to the outer medulla, sparing the inner medulla.