9 nmol/L) and COPD (21.5 nmol/L) was lower than in controls (39.8 nmol/L; P=0.001). Compared with controls, patients with asthma and COPD had lower molar ratios of 25(OH)D3-to-vitamin D3 and higher molar ratios of 1α,25(OH)2D3-to-25(OH)D3 both pre- and post-supplementation (P≤0.005). Inter-group differences in 1α,25[OH]2D3-inducible gene expression signatures were modest and variable where statistically significant. CONCLUSIONS Attenuation of the 25(OH)D response to vitamin D supplementation in asthma and COPD associated with reduced molar ratios of 25(OH)D3-to-vitamin D3 and increased molar ratios of 1α,25(OH)2D3-to-25(OH)D3 in serum, suggesting that vitamin D metabolism is dysregulated in these conditions.The phosphine-catalyzed cascade Michael addition/[4+2] cycloaddition reaction of tetrahydrobenzofuranone-derived allenoates and 2-arylidene-1,3-indanediones has been reported, affording spirocyclic 1,3-indanedione derivatives in moderate to high yields with moderate to good diastereoselectivities. A scaled-up reaction worked well under mild conditions, and a plausible mechanism is proposed.A novel 6/6/5/6 tetracyclic polyketide named chartspiroton (1) was isolated from a medicinal plant endophytic Streptomyces in Dendrobium officinale. The complete structure assignment with absolute stereochemistry was elucidated through spectroscopic data, computational calculations, and single-crystal X-ray diffraction. Chartspiroton features an unprecedented naphthoquinone derivative spiro-fused with a benzofuran lactone moiety. A plausible polyketide biosynthetic pathway for 1 suggested intriguing oxidative rearrangement steps to form the five-membered lactone ring.Quantum technologies require robust and photostable single-photon emitters. Here, room temperature operated single-photon emissions from isolated defects in aluminum nitride (AlN) films are reported. AlN films were grown on nanopatterned sapphire substrates by metal organic chemical vapor deposition. The observed emission lines range from visible to near-infrared, with highly linear polarization characteristics. The temperature-dependent line width increase shows T3 or single-exponential behavior. First-principle calculations based on density functional theory show that point defect species, such as antisite nitrogen vacancy complex (NAlVN) and divacancy (VAlVN) complexes, are considered to be an important physical origin of observed emission lines ranging from approximately 550 to 1000 nm. The results provide a new platform for on-chip quantum sources.A visible-light-driven photoredox-catalyzed multicomponent reaction of 2-vinylanilines, sulfonyl chlorides, and sulfur ylides is described. This protocol features redox-neutral mild conditions, a broad substrate scope, and good functional group tolerance, providing access to various sulfonated 2,3-disubstituted indolines. The product can be transformed to a diverse range of functionalized indoles by a selective aromatization/nucleophilic substitution process. Mechanistic investigations suggest that both sulfonyl chlorides and sulfur ylides serve as radical sources, and the reaction proceeds through a sequential radical addition/addition/thermal SN2-substitution process.Inorganic solid-state electrolyte (SSE) has offered a promising option for the safe rechargeable Li metal batteries. However, the solid-solid interfacial incompatibility greatly hampers the practical use. The interface becomes even worse during repeated Li plating/stripping, especially under high current density and long cycling operation. To promise an intimate contact and uniform Li deposition during cycling, we herein demonstrate a stress self-adapted Li/Garnet interface by integrating Li foil with a hyperelastic substrate. Consecutive and conformal physical contact was ensured at Li/Garnet interface during Li plating/stripping, therefore dissipating the localized stress, suppressing Li dendrite formation, and preventing Garnet cracks. Record long cycling life over 5000 cycles was achieved with the ultrasmall hysteresis of 55 mV at high current density of 0.2 mA cm-2. Our strategy provides a new way to stabilize Li/Garnet interface from the perspective of anode mechanical regulation and paves the way for the next generation solid-state Li metal batteries.We here describe a novel type of long-wavelength radiation detector that measures illumination intensity at room temperature through mechanical transduction. Compared to semiconductor-based bolometers, our nanomechanical detector exhibits low measurement noise and is inherently transparent and flexible. https://www.selleckchem.com/ The presented solid-state device is based on a 2D-material film that acts as radiation absorber and detector of mechanical strain at the substrate-absorber interface. Optimization of the 2D material properties and realization of a novel edge-on device geometry combines unprecedented detectivity of 3.34 × 108 cm Hz1/2 W-1 with micrometer-scale spatial resolution. The observed combination of superior performance with the facile and scalable fabrication using only liquid processes shows the potential of the presented detector for future ubiquitous and wearable electronics.The C-H annulation of the five-position of quinolines and acrylates to afford heterocycles is an active field of research in organic synthesis. Herein the annulation of 4-aminoquinolines with acrylates through two consecutive C-H activations catalyzed by Rh(III) is described. The reaction proceeds with high atom efficiency under mild reaction conditions, and this protocol will provide appealing strategies for the synthesis of fused quinoline heterocycles.A novel catalytic tautomeric transformation of a β-enaminophosphoryl and 2-aza-Cope rearrangement sequence has been successfully applied to the one-pot synthesis of β-aminophosphonates with high efficiency and good tolerance. In this tandem reaction, Bi(OTf)3 exhibits unique activities and promotes both of enamine-imine tautomerism and 2-aza-Cope rearrangement.To date, the iron-catalyzed construction of C-heteroatom bonds has been less developed due to the difficulty of transmetalation with heteroatom anions and the sluggish reductive elimination. Herein we report an iron-catalyzed method for the silylation of (hetero)aromatic chlorides. It features high efficiency, a broad substrate scope, and excellent functional group compatibility. Moreover, this protocol enables the late-stage silylation of some pharmaceuticals, thus providing an excellent method to access valuable intermediates in medicinal chemistry.