https://www.selleckchem.com/products/Cladribine.html The robustness of the proposed control strategy is tested in the presence of noxious surgical stimulation, BIS sensor fault and heavy hemodynamic disturbance. The pharmacological parameters and recorded signals of 30 patients during various surgeries have been used to validate simulated results. The performance of the proposed control strategy assures optimization and smooth propofol infusion during BIS failure. The proposed system provides stability for a wide range of physiological parameters range. The proposed scheme maintains smooth BIS and MAP signal despite the delay, BIS sensor fault, and surgical disturbances.The current study aimed to develop a potential wound dressing using vitamin B12-loaded polycaprolacton/gelatin nanofibrous scaffold. In order to produce wound dressings, 1000 mcg of vitamin B12 was added to polycaprolacton/gelatin solution and the nanofibrous scaffolds were fabricated through electrospinning method. The obtained scaffolds were studied regarding their hydrophobicity, microstructure, amount of water absorption, water vapor permeability, tensile strength, release test, and cellular proliferation assay. In vitro studies revealed that the incorporation of vitamin b12 into polycaprolacton/gelatin scaffolds could significantly augment L929 cells proliferation at 1 and 3 days post-seeding. However, there was not statistically significant difference between Vitamin B12-containing and polymer-only scaffolds in tensile strength study, surface wettability measurement, water vapor transmission test, the capacity for water absorption, and nanofiber's diameter. Both vitamin containing and free dressings were applied on the full-thickness excisional wound in rat model to compare their healing potential. Our results showed that after 14 days, vitamin B12 containing dressing could significantly enhance wound closure compared to vitamin B12 free scaffolds (92.27 ± 6.84% vs. 64.62 ± 2.96%). Furthermore,