https://www.selleckchem.com/ Systematic control of the transforming growth factor-β (TGFβ) pathway is essential to keep the amplitude and the intensity of downstream signalling at appropriate levels. Ubiquitination plays a crucial role in the general regulation of this pathway. Here we identify the deubiquitinating enzyme OTUD4 as a transcriptional target of the TGFβ pathway that functions through a positive feedback loop to enhance overall TGFβ activity. Interestingly we demonstrate that OTUD4 functions through both catalytically dependent and independent mechanisms to regulate TGFβ activity. Specifically, we find that OTUD4 enhances TGFβ signalling by promoting the membrane presence of TGFβ receptor I. Furthermore, we demonstrate that OTUD4 inactivates the TGFβ negative regulator SMURF2 suggesting that OTUD4 regulates multiple nodes of the TGFβ pathway to enhance TGFβ activity.An increasing number of studies have indicated that red blood cell distribution width (RDW) may be a novel biomarker for the diagnosis and prognosis of various malignancies. However, to date, data on the association of RDW with non-small cell lung cancer (NSCLC) are unclear. Our present study aimed to explore the value of RDW in NSCLC patients. A total of 338 NSCLC patients, 109 small cell lung cancer (SCLC) patients, and 302 healthy participants were retrospectively analyzed between January 2016 and December 2018. In the present study, we found that RDW was significantly increased in NSCLC patients. Receiver-operating characteristic (ROC) analysis showed that the area under the ROC curve (AUC) of RDW was 0.753 in discriminating NSCLC patients from healthy participants, the optimal cut-off value of RDW was 12.95, and the specificity and sensitivity were 76.33% and 76.16%, respectively. Further analysis found that RDW can enhance the diagnostic performance of Cyfra21-1 and NSE in discriminating NSCLC patients from healthy participants or SCLC patients. Among NSCLC patients, RDW was significan