https://www.selleckchem.com/products/Semagacestat(LY450139).html Based on the hydroponics and molecular screening, three genotypes viz., ADT (R) 48, Improved Pusa Basmati 1 and UPLRI 5 were classified as tolerant for its response to P deficiency as they possessed significant increase in desirable root and shoot traits, increased acid phosphatase enzyme and these genotypes also possessed the Pup1 allele for all the five markers. The selected genotypes may be useful for the exploration of novel genes conferring phosphorus deficiency tolerance and used as donor parents in the breeding programs. Absence of this allele in the rice genotypes viz., drought tolerant (Anna (R) 4) and submergence tolerant (CR 1009 Sub 1) may warrant the development of multiple abiotic stress tolerance cultivars for upland and submergence cropping systems in future rice breeding program.Drought stress is one of the major abiotic stresses affecting lint yield and fibre quality in cotton. With increase in population, degrading natural resources and frequent drought occurrences, development of high yielding, drought tolerant cotton cultivars is critical for sustainable cotton production across countries. Six Gossypium hirsutum genotypes identified for drought tolerance, wider adaptability and better fibre quality traits were characterized for various morpho-physiological and biochemical characters and their molecular basis was investigated under drought stress. Under drought conditions, genotypes revealed statistically significant differences for all the morpho-physiological and biochemical traits. The interaction (genotype × treatment) effects were highly significant for root length, excised leaf water loss and cell membrane thermostability indicating differential interaction of genotypes under control and stress conditions. Correlation studies revealed that under drought stress, relative watefic genotypes would pave way for their pyramiding through marker assisted cotton breeding.Soil temperatu