To meet future technological demands of our growing global community new sources of industry critical metals need to be identified. To meet these demands, extracting minerals from larger, lower grade deposits across most commodities is required, which in turn generates ever increasing amounts of mine wastes. We propose that agromining could be used to enables access to unconventional resources not viable using existing minerals processing techniques. This innovative technique relies on so-called hyperaccumulator plants to bio-concentrate high levels of metals into living biomass which can then be extracted from the harvested bio-ore. Producing critical metals, such as nickel, cobalt and thallium, efficiently and sustainably using agromining appears to be well within reach, but this technology needs industrial champions to develop demonstration sites that are scaled appropiately in areas where it is feasible.In arsenic toxicity, activation of the erythroid 2-related factor 2 (NRF2) pathway is regarded as a driver of cancer development and progression; however, the mechanisms by which NRF2 gene expression regulates cell cycle progression and mediates pathways of cellular proliferation and apoptosis in arsenic-induced lung carcinogenesis are poorly understood. In this study, we explored the regulatory functions of NRF2 expression and its target genes in immortalized human bronchial epithelial (HBE) cells continuously exposed to 1.0 μM sodium arsenite over approximately 43 passages (22 weeks). The experimental treatment induced malignant transformation in HBE cells, characterized by increased cellular proliferation and soft agar clone formation, as well as cell migration, and accelerated cell cycle progression from G0/G1 to S phase with increased levels of cyclin E-CDK2 complex,decreased cellular apoptosis rate. Moreover, we observed a sustained increase in NRF2 protein levels and those of its target gene products (NQO1, BCL-2) with concurrently decreased expression of apoptosis-related proteins (BAX, Cleaved-caspase-3/Caspase-3 and CHOP) and increased expression of the anti-apoptotic protein MCL-1. Silencing NRF2 expression with small interfering RNA (siRNA) in arsenite-transformed (T-HBE) cells was shown to reverse the malignant phenotype. Further, siRNA silencing of NQO1 significantly decreased levels of the cyclin E-CDK2 complex, inhibiting G0/G1 to S phase cell cycle progression and transformation to the T-HBE phenotypes. This study demonstrated a novel role for the NRF2/NQO1 signaling pathway in mediating arsenite-induced cell transformation by increasing the expression of cyclin E-CDK2, and accelerating the cell cycle and cell proliferation. Arsenite promotes activation of the NRF2/BCL-2 signaling pathway inhibited CHOP increasing cellular resistance to apoptosis and further promoting malignant transformation.Poly and perfluorinated alkyl substances (PFASs) are persistent organic pollutants (POPs) that are highly resistant to environmental degradation, and have been detected in a broad range of terrestrial and aquatic species. Portunid crabs have been shown to accumulate comparatively high concentrations of PFASs, but previous work examining depuration in crabs was inconclusive. Here, we trialled a novel experimental design to study depuration of PFASs from edible tissues of portunid crabs, using paired claw samples, and trial this design with Giant Mud Crab Scylla serrata exposed to the contaminant under natural conditions. We found evidence for depuration of perfluorooctane sulfonate (PFOS), perfluorohexane sulfonate (PFHxS) and perfluorooctanoic acid (PFOA), but with depuration half-lives as high as 40 days (for PFOS). We also observed substantial variability in the data, including differences in PFAS concentrations between claws from the same individuals, potentially resulting from claw loss and re-growth prior to capture. These results have broad implications for assessing and minimising exposure risk in seafood species.This study incorporates solar radiation model and NOx-O3 photochemistry into computational fluid dynamics (CFD) simulations with the standard k-ε model to quantify the integrated impacts of turbulent mixing, solar heating and chemical processes on vehicular passive (CO) and reactive (NOx, O3) pollutant dispersion within two-dimensional (2D) street canyons. Various street aspect ratios (H/W = 1, 3, 5) and solar-radiative scenarios (LST 0900, 1200, 1500) are considered. The initial source ratio of NO2 to NO is 110 and the background O3 concentration is 100 ppb (mole fraction). The reference Reynolds numbers are ~106-107 and Froude number ranges from 0.23 to 1.14. Personal intake fraction (P_IF) and its spatially-averaged values at the leeward-side (⟨P_IF⟩lee), windward-side (⟨P_IF⟩wind) and both street sides (⟨P_IF⟩) are adopted to evaluate pollutant exposure in near-road buildings. https://www.selleckchem.com/products/zebularine.html As H/W = 1 and 3, the clockwise single vortex is formed under neutral condition. Leeward/ground solar heating at LST 0900/1200 sliinfluences chemical rate slightly, thus this impact on reactive pollutant dispersion is less significant than its effect by the enhanced turbulent mixing.The transparency, heterogeneity and hypotheses considered in the calculation of the environmental impacts of roads are still barriers to the identification of low-carbon solutions. To overcome this problem, this study presents an analysis of 94 papers obtained in a systematic literature review of the Scopus, Science Direct, Mendeley, Springer Link, and Web of Science databases. From a total of 417 road case studies, only 18% were found to be fully transparent, reproducible, and likely to present reliable results. The road design parameters of the speed limit were provided in 11% of the cases, and the average annual daily traffic data were provided in 42%. Limited data were found for the dimensions of road elements such as the number (77%) and width of lanes (33%), shoulders (15%), footpaths (5%), berms (1%) and foreslope (4%). The source of the life cycle inventory was presented in 57% of the case studies, impact assessment method was indicated in 22%, and the software utilized was listed in 50%. A lack of information was noted in the description of the types of materials employed in road projects.