https://www.selleckchem.com/products/sf2312.html The compounds have shown selective cancer cell (HeLa and HEK293T) cytotoxicity over normal cells (NIH3T3 and HDFa) under in vitro conditions as determined from MTT based cell viability assay. Apoptosis was found to be the mechanistic pathway underlying the cancer cell cytotoxicity as obtained from Annexin V-FITC and PI dual staining assay which was further substantiated by nuclear morphological changes as observed by AO/EB dual staining assay. Cellular morphological changes, as well as nuclear condensation and fragmentation upon treatment with these compounds, were observed under bright field and confocal microscopy. Research related to boronic acids, from synthetic development to materials to drug discovery, has skyrocketed in the past 20 years. In terms of drug discovery, the incorporation of boronic acids into medicinal chemistry endeavours has seen a steady increase in recent years. In fact, the Food and Drug Administration (FDA) and Health Canada have thus far approved five boronic acid drugs, three of which were approved in the past four years, and several others are in clinical trials. Boronic acids have several desirable properties that has led to their increased use, including potentially enhancing potency of drugs and/or improving their pharmacokinetics profile. This review explores discovery processes of boronic acid drugs. It begins with a brief scope of boron in natural products and in current drugs, followed by an investigation into the various rationalizations for boronic acid incorporation and the synthetic developments that focused on facilitating their addition into organic compounds. We hope that the knowledge we have assembled in this literature review will encourage medicinal chemists to consider the potential benefits of incorporating boronic acids into their future drug discovery endeavours. Carbapenemase-producing Enterobacteriaceae (CPE) confer resistance to antibiotics that are of critical im