Analysis of the hepatic lipidome demonstrated that TRF did not elevate LCPUFA while reducing steatosis. However, TRF created (1) a separate hepatic lipid signature for triacylglycerols, phosphatidylcholine, and phosphatidylethanolamine species and (2) modified gene and protein expression consistent with reduced fatty acid synthesis and restoration of diurnal gene signaling. TRF increased the saturated fatty acid content in visceral adipose tissue. In summary, TRF of a HF diet alters the lipidomic profile of plasma, liver, and adipose tissue, creating a third distinct lipid metabolic state indicative of positive metabolic adaptations following HF intake. Traditional pharmacopeias have been developed by multiple cultures and evaluated for efficacy and safety through both historical/empirical iteration and more recently through controlled studies using Western scientific paradigms and an increasing emphasis on data science methodologies for network pharmacology. Traditional medicines represent likely sources of relatively inexpensive drugs for symptomatic management as well as potential libraries of new therapeutic approaches. Leveraging this potential requires hard evidence for efficacy that separates science from pseudoscience. We performed a review of non-Western medical systems and developed case studies that illustrate the epistemological and practical translative barriers that hamper their transition to integration with Western approaches. We developed a new data analytics approach, in silico convergence analysis, to deconvolve modes of action, and potentially predict desirable components of TM-derived formulations based on computational consensus ana-based practice, as viable integrative implementation mode. Second, we offer a new Bradford-Hill-like framework for setting research priorities and evaluating efficacy, with the goal of rescuing potentially valuable therapies from the nutraceutical market and discrediting those that are pseudoscience. Third, data analytics pipelines offer new capacity to generate new types of TMS-inspired medicines that are rationally-designed based on integrated knowledge across cultures, and also provide an evaluative framework against which to test claims of fidelity and efficacy to TMS made for nutraceuticals. Malignant ascites (MA) effusion is mainly caused by hepatocellular, ovarian, and breast cancer etc. It has been reported that Euphorbia kansui (EK), the root of Euphorbia kansui S.L.Liou ex S.B.Ho, possessing a therapeutic effect on MA. However, the clinical applications of EK are seriously restricted for its severe toxicity. Although studies demonstrated that vinegar-processing can reduce the toxicity and retain the water expelling effect of EK, its specific mechanism remains unknown. This study aims to explore the underlying mechanisms of toxicity reduction without compromising the pharmacological effects of EK stir-fried with vinegar (VEK). 3-O-(2'E,4'Z-decadienoyl)-20-O-acetylingenol (3-O-EZ), a major diterpenoid of EK, could convert into ingenol after processing EK with vinegar. The H22 mouse hepatoma ascites model was replicated, and were given 3-O-EZ and ingenol seven days (110.14, 50.07 and 27.54mg/kg). The histopathological observation, serum liver enzymes, serum Renin-Angiotensin-Aldosterone Stion in toxicity without compromising the pharmacological effects of VEK. 3-O-EZ and ingenol possess significant effect in treating MA effusion, while ingenol has lower toxicity compared with 3-O-EZ. And provide evidence for the mechanism of attenuation in toxicity without compromising the pharmacological effects of VEK.Various tetrazole and oxadiazole C-nucleoside analogues were synthesized starting from pure α- or β-glycosyl-cyanide. The synthesis of glycosyl-cyanide as key precursor was optimized on gram-scale to furnish crystalline starting material for the assembly of C-nucleosides. Oxadizole C-nucleosides were synthesized via two independent routes. First, the glycosyl-cyanide was converted into an amidoxime which upon ring closure offered an alternative pathway for the assembly of 1,2,4-oxadizoles in an efficient manner. Second, both anomers of glycosyl-cyanide were transformed into tetrazole nucleosides followed by acylative rearrangement to furnish 1,3,4-oxadiazoles in high yields. These protocols offer an easy access to otherwise difficult to synthesize C-nucleosides in good yield and protecting group compatibility. These C-nucleosides were evaluated for their antitumor activity. This work paves a path for facile assembly of library of new chemical entities useful for drug discovery.The aim of the current study is to report a simple and efficient method to chemically modify chitosan in order to form S-nitroso-chitosan for antibacterial applications. Firstly, commercial chitosan (CS) was modified to form thiolated chitosan (TCS) based on an easy and environmental-friendly method. TCS was featured based on physicochemical and morphological techniques. Results have confirmed that thiol groups in TCS formed after CS's primary amino groups were replaced with secondary amino groups. Free thiol groups in TCS were nitrosated to form S-nitrosothiol moieties covalently bond to the polymer backbone (S-nitroso-CS). Kinetic measurements have shown that S-nitroso-CS was capable of generating NO in a sustained manner at levels suitable for biomedical applications. The antibacterial activities of CS, TCS and S-nitroso-CS were evaluated based on the minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and time-kill curves determined for Escherichia coli, Staphylococcus aureus and Streptococcus mutans. MIC/MBC values reached 25/25, 0.7/0.7 and 3.1/3.1 μg mL-1 for CS/TCS and 3.1/3.1, 0.1/0.2, 0.1/0.2 μg mL-1 for S-nitroso-CS, respectively. https://www.selleckchem.com/products/ver155008.html Decreased MIC and MBC values have indicated that S-nitroso-CS has higher antibacterial activity than CS and TCS. Time-kill curves have shown that the bacterial cell viability decreased 5-fold for E. coli and 2-fold for S. mutans in comparison to their respective controls, after 0.5 h of incubation with S-nitroso-CS. Together, CS backbone chemically modified with S-nitroso moieties have yielded a polymer capable of generating therapeutic NO concentrations with strong antibacterial effect.