https://www.selleckchem.com/products/alkbh5-inhibitor-1-compound-3.html ulated by a strong fibrosis reaction. Importantly, their molecular degradation releases a product (a glycosyl-nucleoside conjugate) promoting angiogenesis. In this sense, these LMWH represent an important advance in the development of biomaterials promoting tissue regeneration.Cell therapy to restore cardiac function in chronic heart failure has been extensively studied. However, its therapeutic value is limited due to poor cell engraftment and survival and the therapeutic outcomes have been attributed to paracrine secretions such as extracellular vesicles (EV). The direct use of EV is an attractive therapeutic strategy and it has been shown that the kinetics of delivery of the EV to the targeted tissue may impact the outcomes. However, there are currently no technologies to deliver EV to the heart in a controlled and tunable manner. The objective of this study was to design a controlled release system, based on a photocurable adhesive polymer, to locally deliver EV to the cardiac tissue. We have first demonstrated that the adhesive polymer, PGSA-g-EG, did not impact the EV bioactivity in vitro and was biocompatible in vivo when tested in a rat model. Importantly, the polymer remained attached to the heart surface for at least 1 month. We have then evaluated and optimized the in viable manner, EV to the heart. The present study describes the use of PGSA-g-EG polymer as an adhesive cardiac patch with potential to enable the controlled delivery of bioactive EV over an extended period of time to the cardiac tissue.Ocular inflammation is one of the leading causes of blindness worldwide, and steroids in topical ophthalmic solutions (e.g. dexamethasone eye drops) are the mainstay of therapy for ocular inflammation. For many non-infectious ocular inflammatory diseases, such as uveitis, eye drops are administered as often as once every hour. The high frequency of administration coupled with the side eff