https://www.selleckchem.com/CDK.html Determining the blood glucose level is important for the prevention and treatment of diabetes mellitus. We developed a sensor system using Quartz Crystal Microbalance (QCM) to determine the blood glucose level from human blood serum. This study consists of two experimental stages artificial glucose/pure water solution tests and human blood serum tests. In the first stage of the study, the QCM sensor with the highest performance was identified using artificial glucose solution concentrations. In the second stage of the study, human blood serum measurements were performed using QCM to determine blood glucose levels. QCM sensors were coated with phthalocyanines (Pcs) by jet spray method. The blood glucose values of 96 volunteers, which ranged from 71 mg/dL to 329 mg/dL, were recorded. As a result of the study, human glucose values were determined with an average error of 3.25%.In this study, the catalytic activity and stability of flowerlike hybrid horseradish peroxidase (HRP) nanobiocatalyst (HRP-Cu 2+ ) obtained from Cu 2+ ions and HRP enzyme in the polymerization reaction of guaiacol were analyzed. We demonstrated that HRP-Cu 2+ and hydrogen peroxide (H 2 O 2 ) initiator showed significantly increased catalytic activity and stability on the polymerization of guaiacol compared to that of free HRP enzyme. Poly(guaiacol) was observed with quite high yields (88%) and molecular weights (38,000 g/mol) under pH 7.4 phosphate-buffered saline (PBS) conditions at 60 °C with 5 weight% of HRP-Cu 2+ loading. HRP-Cu 2+ also shows very high thermal stability and works even at 70 °C reaction temperature; free HRP enzyme denatures at that temperature. Furthermore, HRP-Cu 2+ provided considerable repeated use and showed some degree of catalytic activity, even after the fourth recycle, in the polymerization of guaiacol.A series of cholesterol and based hydrophobic urea and thiourea compounds were synthesized and successfully used as a cocatalyst fo