https://www.selleckchem.com/products/OSI-906.html 92 ± 3.73 and 5.35 ± 4.62 points, respectively. Also, 80% participants (7 with moderate-mild impairment, 1 with severe impairment) achieved minimal clinically important difference (MCID FMA-UE >5.2 or ARAT >5.7) during the course of the study. Kinematic measures indicate that, on average, participants' movements became faster and smoother. Moreover, modulations in movement related cortical potentials, an EEG-based neural correlate measured contralateral to the impaired arm, were significantly correlated with ARAT scores (ρ = 0.72, p less then 0.05) and marginally correlated with FMA-UE (ρ = 0.63, p = 0.051). This suggests higher activation of ipsi-lesional hemisphere post-intervention or inhibition of competing contra-lesional hemisphere, which may be evidence of neuroplasticity and cortical reorganization following BMI mediated rehabilitation therapy.Autism spectrum disorder (ASD) is characterized by deficits in social interactions, impairments in language and communication, and highly restricted behavioral interests. Transcranial direct current stimulation (tDCS) is a widely used form of noninvasive stimulation and may have therapeutic potential for ASD. So far, despite the widespread use of this technique in the neuroscience field, its effects on network-level neural activity and the underlying mechanisms of any effects are still unclear. In the present study, we used electroencephalography (EEG) to investigate tDCS induced brain network changes in children with ASD before and after active and sham stimulation. We recorded 5 min of resting state EEG before and after a single session of tDCS (of approximately 20 min) over dorsolateral prefrontal cortex (DLPFC). Two network-based methods were applied to investigate tDCS modulation on brain networks 1) temporal network dynamics were analyzed by comparing "flexibility" changes before vs after stimulation, and 2) frequency specific network changes were identified using