https://www.selleckchem.com/products/sgc-cbp30.html Gamma passing rate for planned/delivered doses comparison was above 98% for both groups with 3 mm/3% distance to agreement/dose difference criteria. Total monitor units per fraction were 647 ± 94 and 2034 ± 570 for CF-RT and UF-RT, respectively. The total delivery time for boost radiation for the patients in the UF-RT arm was, on average, four times less than the total time for a conventional regimen with statistically equal clinical outcomes for the two arms in this study.Despite the dramatic improvements of revascularization therapies occurring in the past decades, a relevant percentage of patients treated with percutaneous coronary intervention (PCI) still develops stent failure due to neo-atherosclerosis (NA). This histopathological phenomenon following stent implantation represents the substrate for late in-stent restenosis (ISR) and late stent thrombosis (ST), with a significant impact on patient's long-term clinical outcomes. This appears even more remarkable in the setting of drug-eluting stent implantation, where the substantial delay in vascular healing because of the released anti-proliferative agents might increase the occurrence of this complication. Since the underlying pathophysiological mechanisms of NA diverge from native atherosclerosis and early ISR, intra-coronary imaging techniques are crucial for its early detection, providing a proper in vivo assessment of both neo-intimal plaque composition and peri-strut structures. Furthermore, different strategies for NA prevention and treatment have been proposed, including tailored pharmacological therapies as well as specific invasive tools. Considering the increasing population undergoing PCI with drug-eluting stents (DES), this review aims to provide an updated overview of the most recent evidence regarding NA, discussing pathophysiology, contemporary intravascular imaging techniques, and well-established and experimental invasive and pharmacological