Crowd video monitoring and analysis is a hot topic in computer vision and public management. The pre-evaluation of crowd safety is beneficial to the prediction of crowd status to avoid the occurrence of catastrophic events. This paper proposes a method to evaluate crowd safety based on fuzzy inference. Pedestrian's number and distribution uniformity are considered in a fuzzy inference system as two kinds of attributes of a crowd. Firstly, the pedestrian's number is estimated by the number of foreground pixels. Then, the distribution uniformity of a crowd is calculated using distribution entropy by dividing the monitoring scene into several small areas. Furthermore, through the fuzzy operation, the fuzzy system is constructed by using two input variables (pedestrian's number and distribution entropy) and one output variable (crowd safety status). Finally, inference rules between the crowd safety state and the pedestrian's number and distribution uniformity are constructed to obtain the pre-evaluation of the safety state of the crowd. Three video sequences extracted from different scenes are used in the experiment. Experimental results show that the proposed method can be used to evaluate the safety status of the crowd in a monitoring scene.Research in quantum communications networks (QCNs), where multiple users desire to generate or transmit common quantum-secured information, is still in its beginning stage. To solve for the problems of both discrete variable- and continuous variable-quantum key distribution (QKD) schemes in a simultaneous manner as well as to enable the next generation of quantum communication networking, in this Special Issue paper we describe a scenario where disconnected terrestrial QCNs are coupled through low Earth orbit (LEO) satellite quantum network forming heterogeneous satellite-terrestrial QCN. The proposed heterogeneous QCN is based on the cluster state approach and can be used for numerous applications, including (i) to teleport arbitrary quantum states between any two nodes in the QCN; (ii) to enable the next generation of cyber security systems; (iii) to enable distributed quantum computing; and (iv) to enable the next generation of quantum sensing networks. The proposed QCNs will be robust against various channel impairments over heterogeneous links. Moreover, the proposed QCNs will provide an unprecedented security level for 5G+/6G wireless networks, Internet of Things (IoT), optical networks, and autonomous vehicles, to mention a few.Network disintegration has been an important research hotspot in complex networks for a long time. From the perspective of node attack, researchers have devoted to this field and carried out numerous works. In contrast, the research on edge attack strategy is insufficient. This paper comprehensively evaluates the disintegration effect of each structural similarity index when they are applied to the weighted-edge attacks model. Experimental results show that the edge attack strategy based on a single similarity index will appear limited stability and adaptability. Thus, motivated by obtaining a stable disintegration effect, this paper designs an edge attack strategy based on the ordered weighted averaging (OWA) operator. Through final experimental results, we found that the edge attack strategy proposed in this paper not only achieves a more stable disintegration effect on eight real-world networks, but also significantly improves the disintegration effect when applied on a single network in comparison with the original similarity index.In this paper, we examined the connection between quantum systems' indistinguishability and signed (or negative) probabilities. We do so by first introducing a measure-theoretic definition of signed probabilities inspired by research in quantum contextuality. https://www.selleckchem.com/products/CP-690550.html We then argue that ontological indistinguishability leads to the no-signaling condition and negative probabilities.We present a hybrid quantum-classical neural network that can be trained to perform electronic structure calculation and generate potential energy curves of simple molecules. The method is based on the combination of parameterized quantum circuits and measurements. With unsupervised training, the neural network can generate electronic potential energy curves based on training at certain bond lengths. To demonstrate the power of the proposed new method, we present the results of using the quantum-classical hybrid neural network to calculate ground state potential energy curves of simple molecules such as H2, LiH, and BeH2. The results are very accurate and the approach could potentially be used to generate complex molecular potential energy surfaces.We investigated the dynamics of a two-qutrit system in a correlated quantum channel. The partial correlations between consecutive actions of the channel can effectively postpone the phenomenon of distillability sudden death (DSD) and broaden the range of the time cutoff that indicates entanglement of the positive partial transpose states. Particularly, the negativity of the system will revive and DSD will disappear in the fully correlated channel.The morphological changes in cortical parcellated regions during aging and whether these atrophies may cause brain structural network intra- and inter-lobe connectivity alterations are subjects that have been minimally explored. In this study, a novel fractal dimension-based structural network was proposed to measure atrophy of 68 parcellated cortical regions. Alterations of structural network parameters, including intra- and inter-lobe connectivity, were detected in a middle-aged group (30-45 years old) and an elderly group (50-65 years old). The elderly group exhibited significant lateralized atrophy in the left hemisphere, and most of these fractal dimension atrophied regions were included in the regions of the "last-in, first-out" model. Globally, the elderly group had lower modularity values, smaller component size modules, and fewer bilateral association fibers. They had lower intra-lobe connectivity in the frontal and parietal lobes, but higher intra-lobe connectivity in the temporal and occipital lobes.