https://www.selleckchem.com/products/sodium-2-1h-indol-3-ylacetate.html 4% (95% CI 17.1-24.3%; 95% PI 7.8-43.9%), with a high grade of heterogeneity. No significant differences were found across geographical locations, or according to the risk of bias. Severity of COVID-19 was associated with increased prevalence of RVD at meta-regression. The presence of RVD was found associated with an increased likelihood of all-cause death (OR 3.32, 95% CI 1.94-5.70). RVD was found in 1 out of 5 COVID-19 patients, and was associated with all-cause mortality. RVD may represent one crucial marker for prognostic stratification in COVID-19; further prospective and larger are needed to investigate specific management and therapeutic approach for these patients.Coronavirus disease 2019 (COVID-19) is a contagious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This disease has spread globally, causing more than 161.5 million cases and 3.3 million deaths to date. Surveillance and monitoring of new mutations in the virus' genome are crucial to our understanding of the adaptation of SARS-CoV-2. Moreover, how the temporal dynamics of these mutations is influenced by control measures and non-pharmaceutical interventions (NPIs) is poorly understood. Using 1,058,020 SARS-CoV-2 from sequenced COVID-19 cases from 98 countries (totaling 714 country-month combinations), we perform a normalization by COVID-19 cases to calculate the relative frequency of SARS-CoV-2 mutations and explore their dynamics over time. We found 115 mutations estimated to be present in more than 3% of global COVID-19 cases and determined three types of mutation dynamics high-frequency, medium-frequency, and low-frequency. Classification of mutations based on temporal dynamics enable us to examine viral adaptation and evaluate the effects of implemented control measures in virus evolution during the pandemic. We showed that medium-frequency mutations are characterized by high prevalence in sp