https://www.selleckchem.com/products/LBH-589.html This effective silencing of the phospho-AXL target thus demonstrated that aptamer specificity and bioavailability can be improved by the chemical modification of existing aptamers for phospho-AXL. These results lay the foundation for the translation of these aptamer candidates and companion biomarkers to the clinic.SAMHD1 is a fundamental regulator of cellular dNTPs that catalyzes their hydrolysis into 2'-deoxynucleoside and triphosphate, restricting the replication of viruses, including HIV-1, in CD4+ myeloid lineage and resting T-cells. SAMHD1 mutations are associated with the autoimmune disease Aicardi-Goutières syndrome (AGS) and certain cancers. More recently, SAMHD1 has been linked to anticancer drug resistance and the suppression of the interferon response to cytosolic nucleic acids after DNA damage. Here, we probe dNTP hydrolysis and inhibition of SAMHD1 using the Rp and Sp diastereomers of dNTPαS nucleotides. Our biochemical and enzymological data show that the α-phosphorothioate substitution in Sp-dNTPαS but not Rp-dNTPαS diastereomers prevents Mg2+ ion coordination at both the allosteric and catalytic sites, rendering SAMHD1 unable to form stable, catalytically active homotetramers or hydrolyze substrate dNTPs at the catalytic site. Furthermore, we find that Sp-dNTPαS diastereomers competitively inhibit dNTP hydrolysis, while Rp-dNTPαS nucleotides stabilize tetramerization and are hydrolyzed with similar kinetic parameters to cognate dNTPs. For the first time, we present a cocrystal structure of SAMHD1 with a substrate, Rp-dGTPαS, in which an Fe-Mg-bridging water species is poised for nucleophilic attack on the Pα. We conclude that it is the incompatibility of Mg2+, a hard Lewis acid, and the α-phosphorothioate thiol, a soft Lewis base, that prevents the Sp-dNTPαS nucleotides coordinating in a catalytically productive conformation. On the basis of these data, we present a model for SAMHD1 stereospecific hy