https://www.selleckchem.com/products/dihydroethidium.html The adverse effects of climate change on crop production are constraining breeders to develop high-quality environmentally stable varieties. Hence, efforts are being made to identify key genes that could be targeted for enhancing crop tolerance to environmental stresses. ERF transcription factors play an important role in various abiotic stresses in plants. However, the roles of the ERF family in abiotic stresses tolerance are still largely unknown in sesame, the "queen" of oilseed crops. In total, 114 sesame ERF genes (SiERFs) were identified and characterized. 96.49% of the SiERFs were distributed unevenly on the 16 linkage groups of the sesame genome. The phylogenetic analysis with the Arabidopsis ERFs (AtERFs) subdivided SiERF subfamily proteins into 11 subgroups (Groups I to X; and VI-L). Genes in the same subgroup exhibited similar structure and conserved motifs. Evolutionary analysis showed that the expansion of ERF genes in sesame was mainly induced by whole-genome duplication events. Moreover, civaluable gene resources for functional characterization towards enhancing sesame tolerance to multiple abiotic stresses. The kaolin induced obstructive hydrocephalus (OHC) model is well known for its ability to increase intracranial pressure (ICP) in experimental animals. Papilledema (PE) which is a predominant hallmark of elevated ICP in the clinic has not yet been studied in this model using high-resolution digital fundus microscopy. Further, the long-term effect on ICP and optic nerve head changes have not been fully demonstrated. In this study we aimed to monitor epidural ICP after induction of OHC and to examine changes in the optic disc. In addition, we validated epidural ICP to intraventricular ICP in this disease model. Thirteen male Sprague-Dawley rats received an injection into the cisterna magna containing either kaolin-Ringer's lactate suspension (nā€‰=ā€‰8) or an equal amount of Ringer's lactate solu