https://www.selleckchem.com/products/th-302.html Taken together, these results indicate that 8q effectively triggers G1 cell cycle arrest and induces cell apoptosis in K562 cells, by inhibiting the CDK4/6-mediated phosphorylation of Rb. Furthermore, the possible binding interactions between 8q and CDK4/6 protein were clarified by homology modeling and molecular docking. In order to verify the inhibitory activity of 8q against other chronic myeloid leukemia cells, KCL-22 cells and K562 adriamycin-resistant cells (K562/ADR) were selected for the MTT assay. It is worth noting that 8q showed significant anti-proliferative activity against these cell lines after 48 h/72 h treatment. Therefore, this study provides new mechanistic information and guidance for the development of new acridones for application in the treatment of CML.Pyrrolopyrimidines are an important class of natural products with a broad spectrum of biological activities, including antibacterial, antifungal, antiviral, anticancer or anti-inflammatory. Here, we present the identification of a biosynthetic gene cluster from the rare actinomycete strain Kutzneria albida DSM 43870, which leads to the production of huimycin, a new member of the pyrrolopyrimidine family of compounds. The huimycin gene cluster was successfully expressed in the heterologous host strain Streptomyces albus Del14. The compound was purified, and its structure was elucidated by means of nuclear magnetic resonance spectroscopy. The minimal huimycin gene cluster was identified through sequence analysis and a series of gene deletion experiments. A model for huimycin biosynthesis is also proposed in this paper.Ex situ catalytic pyrolysis of biomass using char-supported nanoparticles metals (Fe and Ni) catalyst for syngas production and tar decomposition was investigated. The characterizations of fresh Fe-Ni/char catalysts were determined by TGA, SEM-EDS, Brunauer-Emmett-Teller (BET), and XPS. The results indicated that nanoparticles metal