https://www.selleckchem.com/products/wz4003.html Synthetic bioceramics are replacing conventional methods of treating bone defects with autografts owing to the high demand of bone substitutes, with their Surface topography and size contributing to favor cytocompatibility in tissue regeneration. This experimental study deals with the comparative evaluation of the physical characterizations of four different in-house synthesized bioceramics from 3D-bulk to nanoforms of hydroxyapatite (HA), Biphasic calcium phosphate (BCP), Strontium doped hydroxyapatite (SrHA) and Silica coated hydroxyapatite (HASi) and also simultaneously evaluates adhesion, proliferation and osteogenic differentiation of rabbit adipose derived mesenchymal stem cells (RADMSCs) on these biomimetic ceramic niches. The osteogenic induced cells grown on 3D scaffolds for a period of 7, 14, 21, and 28 days were analyzed for their viability (MTT, LDH, live-dead assays), morphology (SEM), proliferation (Cytox-Red) and osteogenic differentiation (ALP, osteocalcin expression). Cellular activities and differentiation of RADMSCs were significantly higher on SrHA indicating the role of strontium in the differentiation of mesenchymal stem cells on this ceramic platform to the bone lineage. In order to reinforce the materials for hard tissue implantation and drug delivery, nano-SrHA (nSrHA) became the nanoparticle of choice based on its non-toxicity, cytocompatibility and osteogenic properties (nSrHA > nHASi > nBCP > nHA). This study aimed to explore the functional roles of Shc SH2-domain-binding protein 1 (SHCBP1) and Kinesin Family Member 23 (KIF23) in HPV-negative head and neck squamous cell carcinoma (HNSCC). Bioinformatic analysis was conducted using data from The Cancer Genome Atlas (TCGA) and GSE103322. HNSCC cell lines were used for in vitro and in vivo analysis. SHCBP1 upregulation was associated with unfavorable survival. SHCBP1 knockdown reduced cell proliferation and increased the cisplatin sensitivity