https://www.selleckchem.com/ In the OC group, neither the ratio of iNKT cells in the blood (P = 0.07), nor the intra-tumor NKT-cell infiltration (P = 0.5) were independent prognostic factors for the follow-up. An increased rate of iNKT cells was detected in benign ovarian tumors compared to OCs. In patients with ovarian cancer, a higher rate of iNKT cells in tumor tissue was present related to that noted in the patient's blood. In addition, a correlation was discovered between the CA125 serum marker and NKT cells from the ovarian cancer tissue. This article has for the first time demonstrated a negative relationship between serum levels and NKT lymphocyte count from ovarian tissue. The inflammatory process in ovarian cancer tissue and the potential infiltration of endothelial immune cells, may result in a reduced number of NKT cells in the tumor microenvironment and increased circulation of the CA125 marker. Presented findings underscore new aspects of the iNKT cells involvement in the ovarian cancer development.Generative adversarial networks (GANs) are currently rarely applied on 3D medical images of large size, due to their immense computational demand. The present work proposes a multi-scale patch-based GAN approach for establishing unpaired domain translation by generating 3D medical image volumes of high resolution in a memory-efficient way. The key idea to enable memory-efficient image generation is to first generate a low-resolution version of the image followed by the generation of patches of constant sizes but successively growing resolutions. To avoid patch artifacts and incorporate global information, the patch generation is conditioned on patches from previous resolution scales. Those multi-scale GANs are trained to generate realistically looking images from image sketches in order to perform an unpaired domain translation. This allows to preserve the topology of the test data and generate the appearance of the training domain data. The evaluation of th