https://www.selleckchem.com/JAK.html A new fluorescent probe Lyso-Fl has been facilely prepared by an esterification reaction of spironolactone fluoran dye Rdi with ethanol, which shows viscosity-selective response by fluorescence. The new probe delivers obvious fluorescence signal enhancement when environmental viscosity changes from 1.01 cP (water) to 1256 cP (98% glycerol). And, both the emission intensity (575 nm) and fluorescence lifetime of Lyso-Fl exhibit individually good linear relationships with the solution viscosity. Besides, Lyso-Fl gives a selective response to viscosity among various biological species and exhibits pH-independent (1-10) fluorescent signals towards viscosity. More importantly, Lyso-Fl shows low cytotoxicity and can be utilized for monitoring of dexamethasone-stimulated viscosity enhancement by cell imaging with excellent lysosome-targeted performance, promoting it a promising fluorescent probe for lysosomal viscosity detection.The objective of this study was to evaluate the effects of heat stress in late gestation independent of maternal reduced feed intake on performance, blood hormones and metabolites, and immune responses of dairy calves from birth through weaning. A total of 30 multiparous Holstein cows at 45 d before expected calving were randomly assigned to one of 3 groups (1) thermal neutral (CL, n = 10) conditions with ad libitum feed intake (10% of refusals on an as-fed basis); (2) pair-fed thermal neutral (CLPF, n = 10) conditions to reduce feed intake to levels similar to the heat stress (HS) group while reared under thermoneutral conditions (80% of the CL group); or (3) heat stress (HS, n = 10) conditions with ad libitum feed intake. Pair-feeding was conducted to quantify the confounding effects of dissimilar feed intake. Calves (10/group) born to cows that were exposed to cooling (IU-CL), pair-feeding (IU-CLPF), or heat stress (IU-HS) were used from birth through weaning. After birth, all the calves were managed under ide