https://www.selleckchem.com/products/ly3009120.html Shewanella oneidensis MR-1 is a dissimilatory metal-reducing bacterium capable of reducing various metal and sulfur compounds and precipitating them in nanoparticulate form. Here, we report the synthesis of molybdenum disulfide nanomaterials at the site of S. oneidensis biofilms grown in the presence of molybdenum trioxide and sodium thiosulfate. Samples from the growth medium were imaged using scanning electron microscopy and characterized using transmission electron microscopy, energy-dispersive x-ray spectroscopy, absorbance spectroscopy, and x-ray diffraction. These methods revealed the presence of molybdenum disulfide nanoparticle aggregates 50-300 nm in diameter with both hexagonal and rhombohedral polytypes. As a biosynthesis method for molybdenum sulfide, the use of S. oneidensis offers the advantage of significantly reduced heat and chemical solvent input compared to conventional methods of synthesizing molybdenum disulfide nanoparticles.A general protocol for the synthesis of multisubstituted 2,3-dihydrofuran-2-carbonitriles and 4,5-dihydrofuran-3-carbonitriles was demonstrated under a metal-free regime with the same oxidant, TBHP. By simply switching the reaction solvent and base, the reaction proceeds via two pathways. An unexpected -CN group migration rearrangement and hydroxylation have occurred in nonpolar and polar solvents, respectively, under the reported conditions. Furthermore, the source of the hydroxyl group and hydrogen in the reaction is indirectly confirmed with isotope labeling studies.Light-matter interactions can occur when an ensemble of molecular resonators is placed in a confined electromagnetic field. In the strong coupling regime the rapid exchange of energy between the molecules and the electromagnetic field results in the emergence of hybrid light-matter states called polaritons. Multiple criteria exist to define the strong coupling regime, usually by comparing the splitting of th