https://www.selleckchem.com/products/nimbolide.html Compelling evidence suggests that heavy metals have potentially harmful effects on the skin. However, knowledge about cellular signaling events and toxicity subsequent to human skin cell exposure to metals is still poorly documented. The aim of this study was to focus on the interaction between four different heavy metals (lead, nickel, cadmium, and mercury) at doses mimicking chronic low-levels of environmental exposure and the effect on skin to get better insight into metal-cell interactions. We provide evidence that the two metals (lead and nickel) can permeate the skin and accumulate at high concentrations in the dermis. The skin barrier was disrupted after metal exposure and this was accompanied by apoptosis, DNA damage and lipid oxidation. Skin antioxidant enzymes such as glutathione peroxidase and methionine sulfoxide reductase are also heavy metal targets. Taken together, our findings provide insight into potential mechanisms of metal-induced oxidative stress production and the cellular consequences of these events.Tuning the metal support interaction (MSI) in heterogeneous catalysts is of utmost importance for various applications in different catalysis reactions. Pt-TiN systems are strong contenders for commercial catalysts, although the charge screening of Pt and non-involvement of N reduces their effective MSI and limits it to the Pt-Ti interface. Here, the bias driven landing of gas phase synthesized Pt nanoparticles (NPs) is used to change the nature of the MSI and enhance the charge transfer phenomenon. Bias driven landing of the Pt NPs translates their impact energies to the TiN surface, resulting in a weakening of the Ti-N bonds. This facilitates a new interaction between the Pt and N atoms, resulting in an electronic equilibration in the N-Pt-Ti triumvirate, nullifying the charge screening of Pt. This change in the nature of the MSI enables long range charge transfer throughout the catalyst surfac