https://www.selleckchem.com/products/nd-630.html The causes of the gradients in species richness remain contentious because of multiple competing hypotheses, significant knowledge gaps, and regional effects of environmental and historical factors on species pools. Coastal zones are subject to particular sets of environmental constraints, thus identifying the drivers of species richness therein should shed light on the regional gradients of species diversity. Here, we investigate the geographic patterns and drivers of plant diversity across coastal regions while allowing for pervasive sampling deficiencies. Based on 142708 records of flowering plant occurrences, we mapped species richness and estimated the level of knowledge across the coastal zone of Brazil. Based on inventory completeness, we used linear regression models to test the predictive power of environmental variables that represent different environmental hypotheses. Few cells (25%) were well-surveyed, reflecting little knowledge about the distribution and diversity of flowering plants on the highly-populated Brazilian coast. Still, we found support for the habitat heterogeneity hypothesis as the best explanation of the variation in species richness of flowering plants in this region. Soil properties and water constraints are also important factors. Although our work emphasises the paucity of information on plant diversity in tropical and human-dominated areas, we show that knowledge limitations should not curb our capability of addressing hypotheses about species diversity.Although ecological disturbances can have a strong influence on pollinators through changes in habitat, virtually no studies have quantified how characteristics of wildfire influence the demography of essential pollinators. Nevertheless, evaluating this topic is critical for understanding how wildfire is linked to pollinator population dynamics, particularly given recent changes in wildfire frequency and severity in many regions of the