https://www.selleckchem.com/products/BIBF1120.html To study the changes in urine metabolism in female water polo players before and after high-intensity training by using ultra-high performance liquid chromatography-mass spectrometry, and to explore the biometabolic characteristics of urine after training and competition. Twelve young female water polo players (except goalkeepers) from Shanxi Province were selected. A 4-week formal training was started after 1 week of acclimatization according to experimental requirements. Urine samples (5 mL) were collected before formal training, early morning after 4 weeks of training, and immediately after 4 weeks of training matches, and labeled as T1, T2, and T3, respectively. The samples were tested by LC-MS after pre-treatment. XCMS, SIMCA-P 14.1, and SPSS16.0 were used to process the data and identify differential metabolites. On comparing the immediate post-competition period with the pre-training period (T3 vs. T1), 24 differential metabolites involved in 16 metabolic pathways were identified, among which niacin and niacinamide metabolism and purine metabolism were potential post-competition urinary metabolic pathways in the untrained state of the athletes. On comparing the immediate post-competition period with the post-training period (T3 vs. T2), 10 metabolites involved in three metabolic pathways were identified, among which niacin and niacinamide metabolism was a potential target urinary metabolic pathway for the athletes after training. Niacinamide, 1-methylnicotinamide, 2-pyridone, L-Gln, AMP, and Hx were involved in two metabolic pathways before and after the training. Differential changes in urine after water polo games are due to changes in the metabolic pathways of niacin and niacinamide. Differential changes in urine after water polo games are due to changes in the metabolic pathways of niacin and niacinamide.Calculating an accurate diameter of arbitrary vessel-like shapes from 2D images is of great use in var