https://www.selleckchem.com/products/bmn-673.html Real-world experiments have been conducted to verify the effectiveness of the proposed approach for sleep-wake detection. The results demonstrate that the proposed method outperforms all existing approaches for sleep-wake classification. In the evaluation of leave-one-subject-out (LOSO) cross-validation which is more challenging and practical, the proposed method achieves remarkable improvements ranging from 5% to 46% over the benchmark approaches.The international standard to ascertain the cause of death is medical certification. However, in many low and middle-income countries, the majority of deaths occur outside of health facilities. In these cases, Verbal Autopsy (VA), the narrative provided by a family member or friend together with a questionnaire is designed by the World Health Organization as the main information source. Until now technology allowed us to automatically analyze the responses of the VA questionnaire with the narrative captured by the interviewer excluded. Our work addresses this gap by developing a set of models for automatic Cause of Death (CoD) ascertainment in VAs with a focus on the textual information. Empirical results show that the open response conveys valuable information towards the ascertainment of the Cause of Death, and the combination of the closed-ended questions and the open response lead to the best results. Model interpretation capabilities position the Deep Learning models as the most encouraging choice.The paper formalizes, implements and evaluates a framework for personalized real-time control of inner knee temperature during cryotherapy after knee surgery. Studies have shown that the cryotherapy should be controlled depending on the individual patient's feedback on the cooling, which raises the need for smart personalized therapy. The framework is based on the feedback control loop that uses predicted instead of measured inner temperatures because measurements are not fea