https://www.selleckchem.com/products/lgk-974.html Our results show that the EEG network based on CFC performs better than other EEG synchronization networks in emotion classification. Moreover, the combination of global features and local features of the brain network, as well as the dynamic network features with continuous time-windows, can effectively improve the accuracy of emotion recognition. This study provides a new idea of network connection for the follow-up study of emotion recognition and other advanced cognitive activities and makes a pioneering exploration for further research on feature selection of emotion recognition and related neural circuits at the brain network level of functional connectivity.Background Mycobacterial FASII pathway is governed by the Protein-Protein Interaction mediated dynamics existent between Acyl Carrier Protein and its partner enzymes. The dehydratase HadAB, involved in the third step of FASII synthesis has remained a key target of drugs like Thiacetazone (TAC) and its consequence on AcpM binding is yet to be deciphered. Owing to the transient nature of these interactions, analysing their implications as a drug target has been exhausting. Methods In this context, we have developed an in vitro method to study the effect of thiocarbamide-containing compounds, TAC and SPA0355 (a thiourea analogue) against mycobacterial HadAB. Additionally, by utilizing crypto-ACP (NBD-tagged Acyl Carrier Protein) as a tool of our choice, we attempted at exploring the effect of TAC and SPA0355 on mycobacterial HadAB. Results SPA0355 behaves at par with TAC and undergoes activation in the presence of monooxygenase EthA thus, bringing about a covalent modification in HadA subunit of HadAB. The crypto-ACP method provides insights into the altered substrate housing capability in HadAB associated with the impediment of its AcpM mediated functionality; an outcome attributed to the repercussions associated with the binding of the aforementioned thioure